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IT. lieseumh% wn Vortex Motion.—Part 111. On Spiral or Gyrostatic Vortex
Aggregates.™

By W. M. Hicks, D.Sc., F.R.S., Professor of Physics in University College,
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34 PROFESSOR W. M. HICKS ON VORTEX MOTION.

Tae chief part of the following investigation (Sects. i. and iii.) was undertaken with
the view of discovering whether it was possible to imagine a kind of vortex motion
which would impress a gyrostatic quality which the forms of vortex aggregates
hitherto known do not possess. The other part (Sect. ii.) deals with the non-
gyrostatic vortex aggregates, the discovery of which we owe to HILr,* and investi-
gates the conditions under which two or more aggregates may be combined into one.
It is shown that it is allowable to suppose one or more concentric shells of vortex
agoregates to be applied over a central spherical nucleus, subject to one relation
between the radii and the vorticities. In all cases the vorticities must be in opposite
directions in alternate shells. The special case when the aggregates are built up
of the same vortical matter is considered, and the magnitudes of the radii and
the positions of the equatorial axes determined. The cases of motion in a rigid
spheroidal shell and of dyad spheroidal aggregates are also considered.

The chiet part of the paper refers to gyrostatic aggregates. The investigation
has brought to light an entirely new system of spiral vortices. The general con-
ditions for the existence of such systems, when the motion is symmetrical about
an axis, are determined in Sect. i., and are worked out in more detail for a particular
case of spherical aggregate in Sect. iii. It is found that the motion in meridian
planes is determined from a certain function v in the usual manner. The velocity
along a parallel of latitude is given by v = f'() / p where p is the distance of the
point from the axis. The function ¢, however, does not depend on the differential
equation of the ordinary non-spiral type, but is a solution of the equation
dr® i do* " df '
where ¥ and f are both functions of . The case I' and fdfjdy both uniform is
briefly treated. 1t vefers to a spiral aggregate with a central solid nucleus, and
is not of great interest. The case F uniform and fec i is treated more fully. If
= M\js/a where « is the radius of the aggregate

SV P
p=A{J, () =i }sine.

The most striking and remarkable fact brought out is that with increasing para-
meter A, we get a periodic system of families of aggregates. The members of each
family differ from one another in the number of layers and equatorial axes they
possess. I have ventured to call them singlets, doublets, triplets, &e., in contra-
distinetion to the more or less fortuitous and arbitrary compounds dealt with later,
and which I have named monads, dyads, triads, &c. Of these families two are
investigated more in detail than the others. In one family (the X, family) all the
members remain at rest in the surrounding fluid. In the other (the N, family) the

# < On a Spherical Vortex,” ¢ Phil. Travs.,’ A, vol. 185, 1894.
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 35

distinguishing feature common to all the members is that the stream lines and
the vortex lines are coincident.

The parameter X defines the total angular pitch of the stream lines, on the outer
current-sheet, viz., up the polar axis and down the outside ; although in the aggregates
with more than one axis these lines are not one continuous stream line. The first
with A< 57637 (the first N, parameter)-—behave abnormally. Beyond
these we get successive series, in one set of which the velocity of translation is in the
same direction as the polar motion of the central nucleus, in the alternate set the
velocity is opposite, and the aggregate regredes in the fluid as compared with its
central aggregate (see fig. 3, Plate 1). The physical analogue of these aggregates
is obvious. It is specially enlarged upon in the abstract.®

Suppose we set ourselves the problem of making a set of aggregates with greater
and greater angular pitch. As we do so we shall find that as the pitch increases
the equatorial axis contracts, and the surface velocity diminishes. On the outer
layers (ring shaped) the spiral is chiefly produced on the inner side facing the polar
axis, until on the boundary itself the stream lines flow in meridians, and the
twist is altogether on the polar axis. The pitch can be increased up to a certain
degree. As this is done, the stream lines and vortex lines fold up towards one
another, coiucide at a certain pitch, and exchange sides. When an external angular
pitch of about 330° is attained it is impossible to go further if a simple aggregate is
desired. If a higher pitch is desired it is attained by taking it in two parts. First,
a central spherical nucleus of the same nature as the former, in which a portion of
the twist is produced, and outside this a spherical shell, in which the spirals have
the same direction of twist, and complete the pitch to the desired amount but in
which the spirals are traversed in the opposite direction. With increasing pitch
this layer becomes thicker, and its equatorial axis contracts relatively to the mid-
point of the shell until another limit is reached ; the stream and vortex lines again
fold together, cross, and expand as this second limit is reached. If a larger pitch still
is desired there must be a third layer, and so on. The first coincidence of vortex
and stream lines takes place for an aggregate whose pitch is 257°27. Whenever a
maximum pitch is attained the aggregate is at rest in the fluid. This is first
attained for an external pitch of 330>14". Beyond this there are two equatorial
axes. For an external pitch of 442°37" the stream and vortex lines again coincide,
the internal nucleus gives 257°:27’ of the piteh and the outer shell the remainder,
and so on.

At the end a theory of compound aggregates is developed similar to that in
Sect. il. for non-gyrostatic vortices. It is not worked out in detail in the present
communication, but the conditions are determined for dyad compounds, whilst a
similar theory holds for triad and higher ones. Each element of a poly-ad may consist
of singlets, doublets, &e. The equations of condition leave three quantities arbitrary—

* ¢ Roy. Soc. Proe.,” vol. 62, p. 332.
F 2

aggregates
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36 PROFESSOR W, M. HICKS ON VORTEX MOTION.

as, for instance, ratio of volumes, ratio of primary cyclic constants, ratio of secondary
eyclic constants. The full development of this theory is. however, left for a future
communication. It is clear that spiral or gyrostatic vortex aggregates are not confined
to forms symmetrical about an axis. Their theory is however much more complicated.

If we take any particular spherical aggregate with given N\ and primary cyclic
constant (u), the energy is determinate. We may, however, alter the energy. If it
be increased, the spherical form begins to open out into a ring form, whose shape and
properties have not yet been investigated. If the energy be increased sufficiently
the aperture becomes large compared with the thickness of the rotational core, and
approximate calculation can be applied. The differential equation for i is given in
Sect. i., but its development is left for a future occasion. After that I hope to deal
with the question of stability, and then more fully with that of the conditions of
combination. The new field opens up so many questions of interest that other
workers in it are welcomed.

Section 1.—Gleneral Theorems.

1. To give an idea of the nature of the motions considered in the present investi-
gation, consider the case of motion of an infinitely long cylindrical vortex of sectional
radius «. The velocity perpendicular to the axis inside the vortex will be of the
form v = f(r), where f'(0) = 0. Outside it will be given by v =Va/r, where V= f(a).

We may, however, have a motion in which the fluid moves parallel to the axis
inside the cylinder with rest outside. The velocity will be of the form u = F(r)
inside, where F'(¢) = 0, and zero outside. Both f(») and F () are arbitrary functions
subject only to the conditions f(0) = 0 and F («) = 0. '

Putting aside for the present the question of the stability of these simple motions
or of their resultant, it is clear that if we superpose the two we get another state
of motion in which we have vortex-filaments in the shape of helices lying on
concentric cylindric surfaces. The problem to be considered is whether it is possible
to conceive a similar superposition of two motions in the case of any vortex aggregate
whose motions are symmetric about an axis.

There are an infinite number of either ring-shaped vortices, or singly connected
aggregates (of which HILL’s vortex may serve as a type), differing from one another
in the law of vorticity of the different parts—the most important being those in
which the vorticity is uniform. The motions in all these are known in terms of
the stream function . The value of  is however at present only actually known for
an infinitely thin ring-filument or for a spherical aggregate.

2. We are to consider two superposed motions. The one component is in meridian
planes through an axis and can be defined in terms of the stream-function y.* The

* Throughout y is taken as the total flow up through the circle whose radius is p. In other words the

velocity perpendiculam to ds is 2%_7%%’ .
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 37

other component is everywhere perpendicular to these meridian planes. The vortex
aggregates will be moving with rectilinear translation through the fluid with a
velocity calculable, when the distribution of vortex motion is known, by HeLMBOLTZS
method. Bring the aggregate to rest by impressing everywhere a velocity equal and
opposite to the velocity of translation. The motion then consists of a flow up through
the centre in the direction of previous translation, the fluid then streaming (in this
most. general case) in spirals round a certain circle. The circle may conveniently be
called the equatorial awxis of the aggregate. The line of symmetry through the
centre in the direction of translation may then be termed the polar axis. Whether
we deal with ring-shaped or singly connected aggregates, the surfaces ¢ will always
be ring-shaped inside. In fact they are so also at the boundary, for the surface value
of ¢ really consists in the latter case of the outer boundary together with the
polar axis.

8. Conceive now the aggregate divided up into a large number of ring-surfaces
given by values of a parameter ¢ differing by dy, and confine attention to what is
going on between the two surfaces ¢ and ¢ + dif. We shall suppose ¢ to increase as
we pass from the outside inwards. Let dn denote the distance at a point between
the surfaces ¢ and ¢ + di, dn to be measured also inwards. In the shell considered
the lines of flow will be spiral, and the vortex-filaments also spirals, as indicated in
the figure, the thin line Pf representing a line of flow, the thick Pv a vortex-filament,

Polardxcs

g

o

and the line Pm a meridian section. Denote the velocity at P by v and the angle it
makes with the meridian by ¢. Also let  denote the molecular rotation at P, and x
the angle the filament makes with the meridian—estimated positive when on the
opposite side of the meridian to v.

Consider the flow between the two surfaces y and ¢ 4 di across the “ parallel of
latitude ” through P. The total flow must be the same for every parallel. The area
through which the flow takes place is 2mpdn, where p is the distance of P from the
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38 PROFESSOR W. M. HICKS ON VORTEX MOTION.

polar axis. Hence 2mpv cos ¢dn is constant over the surface . It must therefore
be of the form f(y) di. So far ¢ is only defined as the parameter which determines
the particular surface. Choose the parameter so that f(y) = 1. 4 is then analogous
to the stream-function in the simple case. It acts in fact as the stream-function for
the component of velocity » cos ¢ Similar reasoning leads to the conclusion that
wp cos ydn is also of the form f () dys, say f,diy.  Hence

2apvcos pdn =dp. . . . . . . . . o (1)
2upw cos xdn = fidy . . . . . . . . . (2)

We started with the supposition that the stream-lines and vortex-lines must lie on
the same surfaces ¥ In other words, there must be no component rotation perpen-
dicular to ¥ This may be expressed in other words by the statement that the
circulation round any circuit drawn wholly on ¥ must vanish. Take for this circuit
any two parallels of latitude. The condition gives that the flow along one must
equal the flow along the other. In other words, the flow round a parallel of latitude
must be the same for all parallels on the same surface . Hence

2oprsing =/, . . . . . . . . . . (8)
where f is a function of . ‘

Equations 1, 2, 3 give conditions which any motion possible between any two given
surfaces ¢ and ¢ + diyy must satisfy. In our case, however, the motions in the
separate shells must fit together. 'We may regard the vortex-filaments as due to the
velocities in two successive shells, 07 as due to the different velocities on the inner
and outer surfaces of the same shell

; the velocities on the inner surface of one being
the same as on the outer of the next succeeding shell. If now w, be any component
of a filament, and dA the area perpendicular to w,, the value of w, dA is given by half
the circulation round dA. Apply this to the two components w cos y along a meridian
and  sin x along a parallel of latitude. As a circuit for o cos x take two parallels
one on Y and the other on ¢y 4+ di. The flow along the first is 2mpv sin ¢ and along
the latter

. ! .
2mpv sin ¢ + 2w 'r;;- (pv sin ¢) dn.

n
Hence

v Cd .
20 cos x . 2mpdn = -~ 2 »(;—7»1' (vp sin ¢) dn.
But by (3),
2mpv sin ¢ = f.
Hence

4

47TP‘”COSX:“(Z,,; Ce e coee (4)
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 39
Comparing with (2) it follows that
£, N _

dn 2
or

17y
fi==bik

We may regard then Eq. (2) as replaced by (4), which includes it as the greater does
the less.

For the circuit for wsin y take a small circuit formed by a small arc ds of a meridian
PP’ on v, the normals (dn) at P, P’ and the portion of the meridian arc on ¥ + dis
cut off by these normals. The flow along the normals dn is zero. Along ds it is
veos ¢ ds; along ds’ it is

veos ¢ ds - z/% (v cos ¢ ds) dn.

The area of the cross-section of wsin x is dn ds.

Hence
. . A
20 sin y dn ds = — (;;b’ (v cos ¢ ds) dn.
But by (1),
v cos (l‘ - 2mp dn ’
therefore
. . d 1 dyr )
dmo sin y ds = — ™ < S cl§) .

- Since dyi/ds = 0 ¢ will give any component of velocity e the meridian plane in
the same way as the ordinary stream-function.

4. It will often be found advantageous to express ¥ in terms of curvilinear
co-ordinates. Denote these by w, v. Displacements perpendicular to the » will be
denoted by dn, and to v by dn/, to be estimated positive in the directious in which
u, v respectively increase.

The differential equation satisfied by i is found by expressing the circulation round
a small area bounded by the curves u, v 4+ du, v, v 4 dv. Let o, ( = o sin x) denote
the rotation at a point of the area. We shall regard this as positive when it goes
clockwise. The circulation is then 2w, X area = 2w, dn, dn'.

The velocities along PQ, PP’ (see fig. 2) are respectively

1 dy 1 dfp

S ) —_— E
2ap dn 2p dn/

The Hows along them are therefore (clockwise)

I P T
S dn' and - AN dn.
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40 PROFESSOR W. M. HICKS ON VORTEX MOTION.
Fig. 2.
x
,o"@
’ol
(/)
<
¢ =
e V4

Hence the total flow round PQQ'P’" is

d /1 dy d ( 1 dy > ‘
du <27rp dn dn-> du — dv \2mp dn’ dn/ dv,
or
d /1 df du dn" d < 1 dy dv dn>
du <27rp du dn’ dv) du dv — dv \2mp dv " dn'" du tu dv.

But this is 2w, dn dn'. Hence

d (1 dyp du dn d (1 dyr dv dn\ __ dn dw
du (p duw” dn” dv) + dv \ p dv dn du) dmao, du dv
4 . dn dn’
= ) 8 — -
e &lnx du dv

(5)-

In many cases p + 2o = f(u -+ v), giving du/dn = dv/olai’, and the equation

simplifies to
KA AN (L AN dn\?
du <p du)+dv <p dv>— dmoy <du>'
The following cases will be required :—

(1) Cylindrical co-ordinates. (p, 2),

du = dp = dn dv = dz = dw/,
and
d (L, 1Ay -
dp (p dp> o T T ATesy
or

d®

Py 1Ay Py ;
iy p (lp+ 4q;tpa.1>)s;1nx e e e
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PROFESSOR W. M. HICKS ON VORTEX MOTION.

(2) Polar Co- ordinates. (r, 0),

p=1rsinf du = dr = dn dv = df dn’ = rd#,
and . o
g d Ay
dr (\ p dr > + do (7’p' d&) = — dmre sy,
or

@ 1 d  cot@dy .
dr® 2 16 - 2 ode T 4737)&) sy .

.‘ (8) Spheroids.
(@) Prolate. Here p + 2 = X sinh (u + w1),

whence
p = A sinh % cos v, z*)\co'husmv

The surfaces v, v are respectively the ellipses and hyperbolas
: :

+ ?,2 22 p2
sinh®, © cosh%s sin%y cos®

u increases from 0 at the origin to « at an infinite distance ; v increases from — Lz at

41

points on the negative part of the axis of #, through 0 for points on the equatorml

plane to 7 at points on the positive part of the axis of z.

Again ‘ ,
dn\2 . EZ_E‘ 2 /EZ_’:{ 2 - i - i .
<;l;> - (\CZ'LL> + (du> — du (p + =) an (p — =)
: — A% cosh (u -+ 'm) cosh (’M — ,m)

= \* (cosh®» — sin®v).

Hence the differential equation is (writing C and § for cosh #, sinh ),

——1 d 1 Ed_“l" [l ]‘ . d\ll‘ . 3 .'. 2 )
cos v du(S d%) + S dv <cosv ;z?;) = = 47N sin y (C* — sin’v) .

(B) Oblate. Here p + 2 = A cosh (% + i)
p = X cosh u cos v, z = A sinh v sin v,

dn\? 2 ginh ( b (0
<du> = N sinh (4 + v) sinh (u — 1)

= \*(cosh® — cos™),
and the differential equation is
Lo

Lay\ LA e
cosv du \ C du) + C v <cosv dv> = — 4wNwsin x (C* — cos™)

VOL, CXCIL.—A. G

(8).

(9).
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42 PROFESSOR W. M. HICKS ON VORTEX MOTION.

(4) Toroidal Functions.—Here [¢ Phil. Trans.,” 1881, Part IIL, p. 614]

p+ a4+ 2 sinh » dw  sinh u
v+ v =log s p=a- ' = ,
p+a-t+z cosh 4 — cos v dn )

whence

d ((J — cos w dafy 1 (L( LAY .
dy .. S (77£> S dw \(O ~ c0s ) dr > = Aaa O C

3
= (L —/f:(z)s?;) siny . (10).

5. Equations 1, 3, 4, 5 or 6 give the conditions for a possible motion. It is open
to us to choose ¥ arbitrarily. In this case the equations give v, w, x, ¢. The motion
is instantaneously possible, but in general it will at once proceed to change the
configuration—the motion will not be steady. The application of this theory to
values of ¢ which are already known (HinrL’s vortex for example) leads to interesting
results, but the absence of steadiness robs the theory of importance. If we impose
the condition of steady motion, it is no longer open to us to choose ¥ at will. Let
us then impose this condition. The condition that the motion shall be steady
involves :— ‘

(1) ¢ must be a surface containing both vortex-lines and stream-lines.

This is already the case.

(2) vwsin (¢ + x) dn must be constant over the surface.

It must therefore be of the form Fdis, where T is a function of . Hence

vosin (¢ + x) = s A (11).

dn

Expanding this, and substituting from 1, 8, 4, 7,

VAN LN L
—fdxp_— J[dwz + 7 d6* 7 dé _Spr’

or

> 1 d? cot @ o d
cz;[;"‘? ﬁ%"‘?%"“g mpF — fd\]; e (1)
where f and F are arbitrary functions of . Choosing these, equation 12 will give
the type of . *

We proceed to apply these general theorems to certain special cases of spherical
aggregates. In order to exemplify the method employed we will take first the case
in which there is no secondary spin, the type in which HiLL’s spherical vortex is the
simplest case.

* For another proof of this equation, due to one of the referees, see end of present paper.
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 43

Section ii.—Aggregates with no Secondary Spin (f=0) and with
Uniform Vorticity.

6. We begin with the spherical aggregate, the simplest type of which is the Hrrr’s
vortex. The equation for s is that given by equation 7, in which w is put kp where
k is uniform and y = 47 Tt is

2, d.. .
d‘lp + 19 ?7%}[,; - 00b,9 ?—g = — dakp’ = — dakr® sin® h,

P2 7,.2.

in which @ is measured from the pole to the equator. A particular solution of this
iy — Fwlkrt sin* 0,

In
d _1 @ cot § c& —
+ ®oder T 2 df 0,

put ¥ = 1"Z,, Z, being a function of # only. Then

a7, d' .
d—0~ t& n(n——-l)én=0.

The integral of this is

92—1

Z, = —sm0 T

where P,_, is a zonal harmonic of degree n — 1,
Hence the general solution of the equation in  is

W = — Lakrt sin' 0 + 2<An7" + n—>

Since
1.3.5...@n—1)
n!

{cos" 0 — ;((; - 112> cos" 20 4 .. }

the values of Z, are easily found, except for Z; or Z,. It is easily found from the
direct equation in this case that Z, = Z, = cos 6. 'The following results are easily
deduced :—

P, =

sin® 0, Ty ==

Ziy = 3
7y = § (4 sin® 6 — 5 sin* 0), sin' 0 = ¢ 7, — & Z,.

wn
-
=
©
)
Q
Q
w
)

Consider now ﬁrst the case of a homogeneous spherical aggregate. In this case
the functlons Z,, apply only to the space outside, and A7"Z, to the space inside.

Let y, denote the value of y inside and v, outside. Hence
G 2
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44 PROFESSOR W. M. HICKS ON VORTEX MOTION
Y = — Sakrt sin” 0 -+ SA 077,

B3,
, — § i
Y = X o=l Zi"
Let @ denote the radius of the sphere. Along the boundary of the sphere ¥, = i,
and also dy/dr = dip/dr.  Expressing sin'd in terms of Z, and Z,,

Yo = — Fwhkr*Zy 4 gwhe'Zy + 2N,

The term in (aki’Z, may be supposed merged in Ag'Z,, and may thercfore be

treated as absent.  The conditions

Y =

B ¢ when s =z o
di (/,frJ

A, =0, A, = 0 when n > 2,

‘

B, =0, B, = 0 when n > 2,

¥

(5=}

and for » = 2

A 0® — what = — |

2 A, a0 — &wka® = — -
1lence
A, = Jmha?, B, = %&wka®,
and
U, = 2wk (Fa*r® — L") sin®0

.
Yo = yremhk — sin*f.

The velocity along the normal to the aggregate 1s

1 dy, s )
27rp »d6 "L 5/6(1, cos 8.

Ilence the agoreoate moves forward throueh the surrounding fluid with a velocit
tole] ] y
 aw
V =1 5‘/6'(0 .
Referred to the aggregate at vest therefore

Y = 2aki® (a* — 1) sin®0.

The cyclic constant (w) is the circulation taken round a meridian section, up the
polar axis and down outside. It is the sum of the circulation round the elementary
areas of which the scction is composed. Hence ‘


http://rsta.royalsocietypublishing.org/

A
A
A
) N

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[ Y

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROFESSOR W. M. HICKS ON VORTEX MOTION. 45

= 3 (elementary circulations) = 320 dA = 1022,0 dA
722277,0 dA = ~ >< volume of aggregate =

Thus
o TH Vo ”,
(;J__./cp,...WLP, =

which are HiLL’s results obtained by direct methods.

7. Heterogeneous Aggregates.—We may, however, superpose on an aggregate such
as the foregoing other spherical layers of different vorticities. It will be advisable to
consider first the case where there is one such layer of vorticity determined by
(say) k. We may call them dyads. In this outer portion both terms in As" and
B/r*=! can appear. Let 4, yn, ¥ denote the stream functions for each part and for
the surrounding fluid. Then

1’[, e 7T/C) 4Z —+ EA,J Lénﬂ

11/2 g —77]6’ 4A + 2 <An7' + 7n—1> )
B,

lP = 2 =1 Zn"

Let o, b denote the radii of the two spherical surfaces (¢ > b), and apply the same
conditions as before to the two surfaces.
Again all the co-efficients vanish except for n = 2, and there results

A — gt = A%+ B e |

e
28 — $rkbt = 24,5 — Ot — Skl |

and
. I
B, Ja? R s i
B, - By , }
— _azi = 275 a4 — ~Cf; — §ak'a’ J

The first two give at once
B = &ua((k - &)V,
the last two
AL = ol

also

H

B, = &7 {(b — ) 0 + ¥a’}
A= 2a (ka4 (b = ¥) B


http://rsta.royalsocietypublishing.org/

VA\
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

a

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

46 PROFESSOR W. M. HICKS ON VORTEX MOTION.
Whence
Fa* + (B — ) b .,
Y, = 27 {f ,,,4,.“,(3,.,_‘,,_,,_),.,,_ 72 %k'of"*} sin® 0,

¥ = 27 {%/c'aw + =) — —;—W} sin’ 6,

da (b =1V + o .
Y = "'11;( VI H B int 6.

7

The normal velocity at the outer boundary is

{
L (when » = a) = %

) (b —¥)0 + Vad
2mrp rd0 ; ¢

a?

os 6.

The cuter boundary therefore progresses unchanged with velocity of translation

g =)0+ W

a?

V=

Bring the outer boundary to rest by impressing on every part of the fluid a
velocity equal and opposite to this, c., adding to the stream-functions a term

e

sin? 6.

The relative motions are then given by

b= {3 (s 4 5 (k= B) B — 2 = 2 (k= F) ) =ttt rrsinto
= {75002 — k't 5 (k= k) <5 — 2ab~> 62} 7 sin® 0

l[,....2‘7" Bolo? — 12) 9% A 2 (o J L 3 ogin? @

V2 = 5 (OL——?)’I +§( - )ab'.?,(a-—'r) s .

If, however, the motion is to be steady, the inner sphere must now be at rest,
that is ¥, = 0 when » =0. We get, therefore, the following necessary relation
between £, k', a, 0,

Ka — kb 4§ (k — ¥) (5 - f-f—) b = 0.
This may be written
V% (0 — 1) 4 & {307 (a — 17) = 207 (o — D)} = 0.

Both the expressions in the brackets are positive, hence k/k" must be negative or
the rotations in opposite directions in the two portions.
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 47

Denote the cyclic constants of the inner and outer portions by w;, pe. As before,
we see that they are respectively

k
— X vol.
w
That is
ik
P = == 5 Uk,
s I
Po == " =3 (o )&

Substituting for £, £ in terms of u,, .

b? ab —
V=i st el
The result is that a double aggregate is possible. If, however, the size is given
the ratio of the vorticities must have a special value, and vice versd. In terms
of the radii it may be shown that
4k — 1) 8* (a0 — b) {2d° + 30° + 4a’b + 6ad®}
45a® (@ + b)

V=

Three cases specially invite attention, (1) equal volumes, (2) both parts made of
similar matter, ¢.c., vorticities equal, and (3) equal cyclic constants.

Case i.—Here a® = 2b°
s 207 _ 1

BT (=) — 20 3 x 2 —4

—; = — 76220 = — & nearly.

Case ii.—k" = — £.

8a® (a® — %) — 4b0* (& — b*) = 0,
Put a/b==, we get

3wt + 8 — 4u* — 4w — 4 = 0.

This has three negative roots; the positive one is

v = 13283 or - = % nearly.

b
Case ilil.—p = — p' or
ke o Y4 __75—7c’
W= BT g
whence
W .
— b = b (0 = 0°) + %4 (5 - 75) b =0,

20° + b — 30’0 = (& — b) (20> — ab — °) = (@ — b)*(2a + b) = 0.

Equal circulations are therefore impossible.
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48 PRQFESSOR W. M. HICKS ON VORTEX MOTION.

& Polyads.—Passing on now to the consideration of any number of layers, let the
radii of the spherical boundaries from the inside outwards be denoted by @y, a,. .. a,;
the vorticities by &, &, . . . &,, and the stream-functions by ¢, ¥s,. .. ¢, and ¢ Then

o= 2w (A — Lhot ) sin?f )

B, .
P, == ZW{Ap”"z - 77“ - ’76197#1}8”12 0

|
1
B .
Yoy = 2 —gin? @ J

P

Applying the conditions of continuity at the pth boundary, there results

B B,
Al + *ai’ — kb = A0 7‘;:"5 Ll il
B, B
2Ap0b§ — j — %kpa; == ZAP,]_}OL}?; = ‘%ﬂ o= % P+1w;,
R D (]
with
. Bl == Oa An-{-l = 0.
Adding »
A=A, =%k, —k)al with A, =0.
Similarly
>B2)+1 — Bp it '1"5‘ (l/l/j)+]_ e kp) Cti Wit’h BI = Ow
Clearly the A’s evolve from the outside, the B’s from inside.
Write _
¥ (k, — kipir) = N,
Then
A, — A, =MNao, with A, =0,
B,y — B,=2Ma, with B, =0
Hence

A, =SNa,  B= 13l

pp2 »

Thus the ¢ are completely determined.

For steadiness of motion it is necessary that the translatory velocity of the different
boundaries be the same. This is obtained if the velocities of the inner and outer
boundaries of each layer are equal.

Hence we get n — 1 equations (p = 2 to n)

. B B
1 — It N 2 n L 2
o V= AJ? + @b 5 kpap - Aﬁ -}— o3 5 k]’aﬁﬂ‘I
D -1
or
1 10
— o= =L (@), —
'n <a];) ”’2"-1/ 5 ( -1 ‘D ):
or
a — a?
— 1 3.8 w1
pr - 5 kp QpQp—1 b o
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 49
If the volumes of all the layers are equal,

a) — ay =0} and a)= pai
Hence
B= —tkp (0= 1) (7" = (p = 1"} o

pp—1) " —{p@—1)" h==2{p—1)N+. ... + M}

or

Now
N1 = 5 (Bper — &,
Hence & )
p—=1)p"—(p+3)(p—1)" b,=—5(p —1)"k, . — 2 {(p—2)" s + .. .. + N}

- "§ {( (10 - 1))/3 - ( - ))B) k’—l + ... (25/3 - 1)702+ kl}a

or subtracting two consecutive equations

= (p+ ) (p— V" b= — {(p— 2V — (p — ) (p — 1)*} by

Thus the £ can be determined in order from the inside. The peculiarity is that the
process can stop at any point. That is that if we have two poly-ads, with m and n
layers respectively (m > n) then the first n layers in the first will be precisely similar
to those in the second. The values are

1

b= — gy b= — 181208,
ky = 4 14717k,
ky = — 1'5866k,
and when p is large
by = = kyor.

As another example, take the case where the layers are formed of the same
material, 7.c., the vorticities alternately equal and opposite. Then £, = (—)?"",

=4k =3k (=) but ho=dk=(=)"}k

P
S Y . 5+ |25 — L \P~2~3 3 CL?, a;l
(ol — o+ ...+ =) = 5 () W=t p _gp
‘p—1

Let @, denote the ratio a,,./a,.
These values are then given by

a— 1 1 1
acf,zf__lz%{l——, 4 — -——}

0l A5 B
&p-1 Zp—1%p—o

. . . . 1
and may be found in succession. The equations are, if 6, denote 1 — IPRUEEE
‘p=—1

@ @, 4+ 1) = 4, (a3 + @, + 1),

VOL. CXCIIL.—A. ’ H
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50 PROFESSOR W. M. HICKS ON VORTEX MOTION.
In which it is clear that
b,_
b,=1— """,
w})-—l

If b, = 1, the equation is
e+ 1)=3% 4+x+ 1),
the positive root of which is # = 1. In this case

—_ — 1
b7)+1--]_— ——-n?.'z'-

= it\-‘p—‘

If ever b, is nearly § = & 4 « (say), @, is nearly 1 = 1 4 £ (say). Then, regarding
a and € of same order
(1 4+36+38) 2+ & =20+ 36+ &) (1 + 2
f=fetdaf— = te— Ha=tall

and

=1l=—F+a)(l—da+ 40" )=L+a—

[

o
oo
R

1

b/ 1 == l - * + “ M

Pt {1 + %“__ _733%“2}»

Hence 6, continually converges to 1 and the value of z, to 1 as p increases.
The first seven values are.

x, = 1'3283, b, = "7582.
x, = 11840, by = "6741.
2, = 11284, b, = 6315,
2, = 10987, b, = *6056.
@, = 10802, b, = '5882.
xe = 10674, b, = *5753.
a; = 1°0580, by = *5660.

The succeeding values will be given to four figures by the foregoing approximations.
The velocities of translation of the series of aggregates are

Monad V, = & ka} : = V.

Dyad  V,=4(7 — 5z})V, = — 9110V,

Triad  V, =} (7 — 10x} + 5aiaf) V, = 4 8615 V..

4-ad V.= 3 (7 — 102} + 10afx; — bataias) V, = — ‘8282 V,.

5-ad Ve =1 (7 — 1023 4 10xix; — 10atwia; + Saiasaial) V, = 8023 V..

&e. Vs ' = — ‘7833 V..
V, = 7618V,
Vs = — 7462V,
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9. The form of the stream lines for a monad aggregate have been delineated by
Hirr. The general form of the stream lines for a poly-ad is obvious, and there is no
special reason for drawing them accurately at present. It will be well, however,
to determine the position of the equatorial axes, for the particular case of homo-
geneous poly-ads, that is in which k, = (—)" k..

The condition at an equatorial axis is that

in which ¢ denotes the stream-function referred to the boundary at rest. Applying
this to the p-th layer in an n-ad

. B . B . .
Y, = 27 {A],a"z -+ 3;— — kgt — A — + 3 kan® } sin®d.

)
r » C/ i

The equation for the equatorial axis is therefore

2
4 2 2 I 4% —
)b ]{;1,,’1/ +3 ]"2)”2' =0,

D

— B, +

or

N
3

(0 = ) = = i) o = faftey (6 — aE) = 0.

This may be written

ad_, - @2 1
D 1 p—1 2 3 1 “o—1
R T A5 (17— a? u = 0.
20— 1! Yad  — 1 it
Now
— 4
ap 1 (a‘p——l - 1) — 3 b_l‘—l (‘L_p'—l - 1))
therefore ,
- a2’ —-1
p—1 —
B —1 1= ?bp-l)
“p
and
.2 (3 p—1 + 1) p 17 bp—la -1 = 0.
For a monad
o’ a
b=0 P = =
2 T e

for a dyad
by=1 »r—=l%ar*—3al=0 r=11720a,.
Beyond dyads
r=a, nearly = (1 + £)a,_,
Then

p—-l {1 - “(%‘Z)>~1 + 1) p 1} + o 1;-15{5 - %(%bp-»x‘!‘ 1)} = 0.

Now b,_, is nearly &

=4t G=Y)b=fn E=77 =14+ )e.

/

H2
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52 PROFESSOR W. M. HICKS ON VORTEX MOTION.
The distance from the inner layer is therefore

2
rp - O{’p—l 5 p—la'p—-l'
From the outer it is

R 2.
Wy — 7 ==y — Uy = 5 Jp10,

Ratio = S 7/
v —
But (p. 50)

— 4
wp—l =1 + :’T,fza—l:

therefore
Ratio = 1,

or the equatorial axis, with increasing number of layers, tends to bisect the distance
between the two boundaries of the layer.
10. Energy.—The energy within any region is

B =4 ([ () + (&) oo

the integral extending within the boundary of the region. By the ordinary method
this is reduced to the form

E = -—-f;f%g%ds—}wﬁwlpdpdz.

Since
7 ( I /1 dye
a /1 £Z£> 4+ <1 f_;lf) — — dro.
dz \ p dz

If the boundary be infinite and the fluid at rest then the first integral is zero,
and

E = ” wy dp dz.

The integral extending only to spaces which contain rotational motion. If the
motion 18 of uniform vorticity o = kp, and

E =k ([ pydpde.
In the cases here considered v is of the form f(r) sin® 0, and
E =2 Eoﬂ F(r) drsin® 00 = 4 & [ 1%f () dr.
In the case of a poly-ad f(r) is different for the various layers, and

E=4 {klﬁlf,-zﬁ(q.)dw +k2§:jwf2(w)dr+ .. }
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We work out the case for a dyad aggregate, in which b, = — %,

Ji(7) 1(3 o — yad) kp® — Lkt
L) =2m {— § kay® + &% b} /7 1 f#d,

Hl

and .
8arls? . o .
{8 (202 — af) af — 5ty al + 15 0k (a) — o)

— 2 ab (0} — ) — g1y (df — al)}

E =

3

8'71'76

=15 {80l —$aial + gty al}
327l

= 1( — sl + +al)

. 3.-:’]7':13o 7

= 1'945 X B x7 i

If the two parts had been single monads their combined energy (when far apart)

would have been

—_ 1 32l al.
E=1534 X [ ?

The energy when combined is therefore greater than when they are separate.

11. It may not be out of place to make a short digression here as to the relation
of a HInr’s vortex to the vortex rings which have been investigated in previous parts
of these researches. As is known the translation velocity of an ordinary ring
decreases as the energy increases, and formule are given in a former paper® whereby
those quantities-can be calculated for comparatively thick rings up to R/» = 4 with
considerable accuracy, and possibly further. Here R is the radius of the equatorial
axis and » the mean radius of the section of the ring. Refer all measurements to the
spherical form, and let ¢ denote its radius, V, its velocity of translation, and E, its
energy. Take now a ring of the same volume and circulation as the sphere, and let
V and E denote its translation velocity and energy. We get the following value of
E/E,, V/V, for different apertures.

R R r v 1
v p ' By
100 .. e 199 176
50 809 ‘162 282 95
10 277 277 593 208
5 1:745 349 784 1025
4 1-500 375 ‘856 8
3 1239 ; 413 946 6

* “Researches in the Theory of Vortex Rings,” Part II., p. 757, ¢ Phil. Trans.,’ 1885, Part II.
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54 PROFESSOR W. M. HICKS ON VORTEX MOTION.

These numbers are graphically represented in fig. 1, Plate 1, where the abscissz
give E/E, and the ordinates V/V, Dotted lines refer to points where calculation
cannot be applied. On the same figure are placed outlines of the aggregates drawn
to scale. Two things at once strike the eye. First, that the spherical aggregate
evidently lies on the K.V curve of the rings, belongs, in fact, to the same family;
and, secondly, that the variation of V with the energy is small over a very large
range. The shape and nature of the aggregate when the energy is nearly that of the
spherical form have not yet been determined. It is probable that as the energy
diminishes the form lengthens along the polar axis, until when the energy is very
small it becomes a long, thin, cylindrical aggregate. When this is so long that the
end portions form only a small portion of the whole, it is possible to obtain an
approximation to the energy, for when very long the fluid outside will be very
nearly at rest (as in case of force outside a long helix). The velocity of propagation
will then be the velocity at the axis. Let a be the radius of the cylinder, 7 its
length. Then

2

la 3

Cc

ol

Again, if V denote the velocity along the axis, the velocity outside is zero, and the
variation at the ends only a small part of the whole. Hence the circulation is

given by
p=VI

Again let v denote the velocity at a distance » from the axis. Take a small
rectangular circuit, b parallel to the axis, one inside distant » from the axis, the other
outside. The circulation round this is bv. But it is also the value SwdA taken
over the area of the rectangle.

Therefore

bv = k22r dA = :f; (volume) == fr o (a0 — 1%),

v=k(a"— 1%, o= lka®;

therefore

v =~'%(T1 —-‘7-::'\.

a” ‘/'

Energy in £ = j 2. bdr. v

0
T N
S §0<1_ ) d ()

2 9 2
TR w 9 o €
=g = o, oMm= gupt
6 G2 oTE

=t mV? =L nlV>
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It is thus the same as a mass of one-third its own mass moving with its velocity of
translation. Now

B, = % wp'c, V, =%,
be
therefore
E wr C A% 5e
85 o0
ORI v, T
therefore

This only holds, however, when V/V, is small. It is a small part of a parabola in
the figure touching the axis of E/E,.

12. Spheroidal Aggregates.—As is known from Hinv's investigations, the spheroid,
although an instantaneously possible form, is not steady. It proceeds at once to
change its shape into a non-spheroidal one. It seems, however, advisable to give the
general outline of the method as adopted in this paper and as applied to the
spheroids, in order to investigate whether by superposing a second or third layer it
may be possible to obtain a steady form.

The functions involved and the differential equation for ¢ are given in Eqs. 8, 9.
Writing C for cosh v and S for sinh u, the differential equation in  is

Vod/lodygy 1 d (1 dyy ‘ e iz
cosv du < S du> + S dw <cosv dv> = — 47k\'S cos v (C° — sin®v),

since
o = kp = k\S cos v.

As in the former case, a particular integral is

Y= — % kp* = — § whk\*S* cos® .

It remains to integrate

Loy LAl iy,

1 a
cosvdu\ S du S dv \cosv dv

This can be satisfied by writing = 2X,,Z, where X and Z are functions respec-
tively of u and v only, and

'fg< 1 dZ)_ mZ )

dv \cos v dv CoS

d(raxy_wx [
du\S du/ "

5

m being any constant. These equations are
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a7 daz, h
;[—”"—l— tanv%- + méd =0 !

.
12X X

- - —cothu 2> —mX =0 |
da? du J

As will be seen later m must be of the form n(n — 1), 7 being any integer.

" Ko . o
Writing for a moment v= 5 — 0, the equation in Z becomes

a*Z az ,
e — oot 09(29 +n(n—1)Z =0,

whence
D

AP,
/., = — sin 0 0

Therefore

Zi, = sin* = cos® v
Zy= 6sin*0 — Lprgin* g
= 6 cos® v — L85 cos'w

cos v = §Zy — % Zy.

To determine X, we proceed by the same analogy to put

D
du
Then
d2X aX d dil) CZP
i cothu;i—% —n(n—1)X = S(T% {gz} + cothu - — n(n—1) P},

If then P denote a zonal harmonic with imaginary argument and of order n — 1,
the right hand of the above vanishes, and the value of X is a solution. That is

ap
X'xz S —
du
Now we have .
— _1__3_@,'___1,) i n (n — 1D e
P, = 22 {0 — o © +}

Hence
X, = $2 X, == 632 4+ L5 & St =& X, — X,

This set of solutions gives values finite and continuous at all points inside a given
ellipse of the family, but infinitely large at an infinite distance. Let Y denote the
second integral of the equation. Then, in the usual way, it may be shown that

Y :X[}%du
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whence it is easy to prove that

d

. 1 azy. CH1
Y, = wz'{_s_sziszlogw,

i e (Y

G177 %0
¢+

v =35 X,log (1 — 5 C (150 — 13),

With these values the particular integral is

- The terms in X,Z,, X,Z, may be supposed merged in the general solution. We
may then write

‘1’]]_ == (AZXZ — ‘74‘5‘ 7T]c)\4X4) Zz + (A_4X4 — '7&'5“ ﬂ'k)\4X2) Z4,

‘;l’z = BzYzzz + B.Y.Z, '

From these it is easy to deduce the values of A, etc., for a single free aggregate,
by applying the conditions ¢, = ¢, and dys/du = dy/du at the surface. It is
unnecessary to do this, as from Hinr’s work we know that it is not steady.

The case of motion inside a rigid spheroidal boundary is also given by Hirr.*
The solution follows immediately by impressing the condition ¥ = 0 when » = u.

Hence

lpl — 4 7716)\4 X2X4 - X2X4. Z o .4 .n.k.)\l‘ . X2X/L ;{' szln Z4’
2 4
which easily reduces to
2ar A
h=1 + 58°

(8% — %) 8%(8* 4- cos™) cos™v.

The total circulation is % AN*CS2
The equatorial axis is given by
s = 0, when v = 0.
du,
That is by the equation

A

S — } = rj:‘-" .
2828 — 48 0, orS 7 S

Dol

* ¢Phil. Trans.” Part I1., 1884, p. 403.
VOL. CXCIL.—A. I
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The equatorial axis therefore lies in the equatorial section in a similar position to
that for a sphere.

18. Dyad Spheroids.—Poly-ad spheroids clearly occur in the same way as for
spheres ; they are, however, also unsteady. It will be sufficient merely to indicate
the steps of the proof.

Let w =« and v = u” denote the two boundaries. ¢ will involve terms in Z, and
Z,. By applying the surface conditions in the same way as for the spheres to both
sets of terms independently, the coeflicients are determined, whilst the condition that
the internal interface has the same translational velocity as the outer gives for Z, an
equation which «" and «” must satisfy. This is

O/sq
g

) C//s/u C//S/u - U/ Gt
1 ’
M=y Mo

= 0,

where
ay, o dx,

4 H

M = X,

du das

and the dashed letters refer to values at the outer and inner boundaries ", %’
The same applied to the Z, terms give

(e | . PRND. 04
o "o ’ 1// 7. QY 2L —
S N T N+ (C's (4% >X2’ 0,
where
v, X,
N =X, du % dw

The existence of steadily-moving spheroids depends on the possibility of finding
values of ', ©” to satisfy these two equations.
It is easy to show that
6M 4 N = 15 (255° 4 14).

Hence, adding 6 times the first equation to the second, there results an equation free
of logarithmic terms and which can easily be reduced to

G W ¢

¢t - Orst 50% — 1

Putting €' =y, C” = a, the factor (x — y)* divides out, and the equation may
be put in the form
2y (° + 2%y + Bwy® — 2w) + (y* — 1) 3y -+ 1) = 0.

Now « > 7 > 1. Hence 3zy* — 2x =xy* + 22 (y° — 1) is positive. The expres-
sion on the left is therefore always positive and no suitable values of x, y satisfy
the equation. A prolate spheroidal dyad is therefore not steady.

The condition for the oblate spheroid can be found by writing 8,/ — 1 for C. 1t
can be shown that this also has no suitable root.
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Section iii,—Gyrostatic Aggregates.

14. Passing on now to the consideration of the more general problem where a
secondary spin exists, the simplest case is that in which in equation (12) both F and

fdf/cys are unitorm.

Suppose
FA e n o f = (2AY)
7 d T
The differential equation in ¥ is now
P LBy b0y e e
dr 2oder T df T smpl — A,

a particular integral of which is
¢ = — 7p'F — LA,

and the general integral is the same as that considered in the previous section, viz. :
/ B
(A’r” + ;jz,"—"].> Z,.

It will however not be found possible to satisfy the boundary conditions unless the
term = A,r be introduced. This term, as well as that in 3A#? makes the motion
discontinuous at the polar axis. However, we will suppose for the moment this
portion of space excluded, and see later if it is possible to do so. The stream-
functions are then,—inside

outside

and p* can be replaced as before by $1Z,.
Applying the conditions ¥, ==, and dys/dr = dys/dr, when » = o it is easy to
deduce that
¥ = — LA (0 — 7)* — ta'Fr'Z, + $7°0* T4,

a’
— .8 2 ly
lllg = 1§ F , 20

The velocity normal to the sphere is

l:_l El‘lf:] = & wFa? cos 6.

That is, the sphere progresses bodily with a velocity given by

V = -1‘8"5— wa’F.
T2
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Impress — V on every point, that is, deduct % #*¢*F*7Z,. Then the stream-

function referred to the boundary is
P = = LA (0 — ) 4 T (0 = 12) L,
At the outer boundary ¢ == 0. If we trace the stream-line ¢ == 0, it is seen that
it consists of the circle » = @ and the curve
A (a — v) == Ea*Fr* (o -+ 7) sin® 6.
This passes through the poles (7 = @, 0 = 0) and touches the circle there. Hence

the space between this and the outer boundary does not contain the polar axis. The
motion given by i is therefore finite and continuous there. The space inside it

must be excluded as giving a motion not possible—or rather, a motion due to sources
and sinks on the polar axis. We shall suppose it excluded by replacing the fluid by
a solid nucleus of the shape required.

The radius of an equatorial axis is given by dys/dr = 0 when & == #/2, or by
A (a — r) + Ea*Fr (0 — 20°) = 0.

. . BA
T ' — ; Bl
In this write »/a = « and 6T

= b, Then

B (b= w—=b=0 . . . . . . . . (13).

This has one root between 0 and 1. The other roots must either be both imaginary,
or, if real, one at least must be negative, since the coeflicient of «* is zero. As,
further, © = — o and @ == 0 both make the expression on the left of the same sign,
both these roots must be negative. Hence there is one and only one root between
0 and 1. That is, there is only one equatorial axis.

In the special case b = 4, the radius of the equatorial axis is @ .27% = 7937a.
For this curve

)
P = FA i;[ (% = 4%) Ly = { — "')Z}'

The curves are drawn in fig. 1, Plate 2, for values of 2¢/Aa® = — 1, 0, -} 1.
The value at the equatorial axis is *397. The value (— 1) is drawn to show how the
discontinuity enters.

The velocity along a parallel of latitude is given by the equation

2mpv sin ¢ = f = /(2A4).

This is zero at the surface and on the spindle-shaped nucleus, and increases to a
maximum at the equatorial axis. The secondary cyclic constant is the circulation
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round the two cireles (1) the equator of the sphere, and (2) the equatorial axis. 1t
is therefore given by

v = \/(ZAi[;'),

v=Aa /(2 — 1 — x*)

or

where 2 is the root of equation (13).

On account of the artificial nature of the internal nucleus the further discussion
of this case is scarcely called for. We pass on, therefore, to the more important
case—the next simplest one—in which F is uniform, but the second terms varies
as .

~ af .
15. Case f 7\[; o« r.—-Here also f varies as .

Write f = ‘_I,J where o is a length, which may be taken to be the radius of the
. 8ma?
sphere, and \ is a pure number. Also write F = —Vi where V is a velocity. Then
the equation in ¢ is
Py LBy wt0dp oy W
dr* + ®dee T 2 de ot V= @ ¥

. . . N
A particular integral is — ”-*p and the general integral depends on

A 1 d\]/* cot@d\[/«
dr? T T e

In this put ¢ = J,Z, where Z, is the function of @ already discussed (§6) and J, is
a function of 7 only. Then

d*J -1 A2
_.912___ {ﬁ(_n__w__l__ﬁg}!]n:=0.

dr? e a

Ji/+/7 is therefore a Brssur’s function of order n — &, which can, as is known, be
expressed in finite form involving circular functions. In what immediately follows,
the values of J, will alone be -vequired. The equation is, writing « for »/a, and

dropping the subscript 2, :

da? \ 2?

[f J and Y denote the two integrals

sin Az
J = ——— — cos A\,
€os A »
Y = N -} sin Az,
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or, in more general terms,

Integral = C {

sin (a« + A2)
———? e o8 (o 4 A
Az ( + )
where C and a are arbitrary constants.
J and Y may be expressed in infinite convergent series. Thus

2n

sin g 2
7/ [
@2n + 1)t

J()__j_/_'__cosy_sj__;r;_gy_“ A=)

f) ,y‘zm
9m+u(2m+1)f+"'} - (14)
2n —

. 1 n+ -
Y(y):—:“(%jﬁ—l—smyz7-{-%3/—{-—...—}-(-—)“1 (?n)! Yt

2 ?/2 i
=%?/{1—1*5 ot (=)

1 %
— e 1,2 n+1 21, ;
- ?/{1+§y+"’+( y (276)1 +- 1 (15),
also,
d . f‘]‘ 1 b
‘i[(:’p =siny — — = Y S}_‘}_;/
dy vy Y
ayY (y) Yy cos y
g Tesy— o= Jd - Tst L (16),
and
dJ 1Y
dy dy — J

Clearly the functions J refer only to space excluding infinity ; Y to space excluding
the origin.
16. For the problem in question the stream-functions are, therefore,

|

.. A% .
inside, Y = — i r*sin* 0 + SAJ,Z,,

outside,

l

ho=3 7,

Applying the surface conditions that when @ = 1, ¥, = v, and dys,/da = ds,/dx, il

follows that when
n > 2, A, =B,=0,

when
n =2,
A% B,
-3 a® + AJ = 72 )
A 4 - f{%
+A2 dx - @ 2

where J’ and dJ’/dz mean the values of J and dJ/dx when x = 1, that is
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) sin A
J'= - —cos,
(ZJ/

. sin'A . ,
=\ sin A — == 4 cos A = \ sin A — J,
dx A

the two equations for A,, B, give

o 3/ 9/
A= Vg Bzz‘ﬁi<—‘” ).

Msinn A \Asin A

The aggregate moves through the fluid with a velocity of translation given by

U=

2B, A% ( 37 >

2mad® ~ A2 \Asin A

By its formation the above value of ¢ satisfies all the equations of condition except
that in those equations s is the velocity-function referred to fixed axes. Here it is
not—it represents the motion referred to the instantaneous position of the sphere.
It is, therefore, not directly applicable unless the velocity of translation given by it

vanishes, that is, unless
"— I\ sin A = 0.

If X\ be a root of this equation we get a steady motion of a vortex aggregate, at
rest in the surrounding fluid.
If we, however, take the above general function, it gives a velocity of translation

Vo[ 3y
U —_— 7;_)\‘:2 <>\' sirh;); i 1) . . . o . . . . (17).
Bring the aggregate to rest by impressing a velocity-—U on the whole fluid—that
is, add to the stream-function a term — wUp? = — wUa’x?® sin *6.

We get a new value of s, referred to axes remaining fixed, viz.,

3Va? . .
—_— m& / 2 X
lp*)x"sin?& J — «*J’) sin *0

Take this value ot ¢y, and put f= %:l/i. Then equations (1, 3, 4, 7) become

, 1 dy
Yp COS ¢ = 5
vpsin ¢ = 57—7:—52
wp COS Y = — :L%; i%é
wp sin x = 47;3;1—; J sin %0.
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These give v, o, qS X-

vo sin (¢ + x) dn == —7—§~Y~:~~~ J' s
' 8ara® sin A
so that the motion given by the new  is a steady one. There exist, therefore,
systems travelling through the fluid with velocities given by (17) and with a steady
motion. The system given by J’ = 4\ sin \ is contained as a special case.

17. There are two circulations to be considered. That along a circuit up the polar
axis and down over the surface of the sphere, and that due to the motion round the
polar axis. Call them respectively the primary and secondary cyelic constants, and
denote them by u, »

o= Zr{z”lrp Id;’;} dr + 2 ! 2{—-« o E%”-} de.

In finding this the term 2%J'sin*6# may be omitted as giving no circulation, and
we may take

Ve - .,
b= 7&3sin7»J sin” ¢
- 3Va? eJ dd’ (=2
P = o sinn {2[0 ” dr — dr JOSIH 0 Clﬂ}
3Va A dJ’
- 71'7\.2 sin X{zj E/? dy — TZg/}
where
A
Yy=-"
Now L "
J J d sin y
IV ST S S C VI AP
f s Y L P + )
therefore, ; v T e
A siny
2[—d=_[m] [[*2Lay.
A Y K o+ o ¥ J

Also, J (y) is of the order »* when y is small, therefore,

)\ J QTI Ny °
2 L*y’z“dy = - i + b@)\,
and v
3Ve . .
Br= ;ﬁﬁ (S’I,)& w— S11 )\)e

If we replace V as a constant of the motion by p,

— T (] — 2]} sin?
V= @ sy O T @) sl
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Before discussing the value of » it will be well to get some general idea of the
nature of the motions. Ome of the most striking peculiarities of these aggregates
is the quasi-periodicity of type as X increases from 0 to infinity. The best way to
illustrate this is to use a graphical construction. Now

Yoo {J (Ax) — 2*J (N\)}.

In fig. 2, Plate 1, the curve y = J (A) is drawn. P, corresponds to a given type
(\) of aggregate. A parabola is drawn with vertex at O and passing through P,.
Represent any abscissa to the left of A (or of P,) by \x, where x<1. Then the
differences of ordinates between the curve and the parabola up to P represent

J (\z) — 22 J (\).

It is clear from the figure that, in the position P, this function never vanishes for
x<1. In the second position, P,, however, the parabola intersects the curve at
another point p. For this point (suppose & = x,) ¥ vanishes for all values of 6, and
the corresponding current sheet is a sphere internal to the boundary. The aggregate
consists of two portions with independent motions. The primary circulations are in
opposite directions, and there will be two equatorial axes. So, as P moves on
along the curve, we., as X increases, we get families of aggregates with three, four, &c.,
layers, and a corresponding number of equatorial axes. We shall denote any transition
value of A by N,. Each layer will have its own secondary circulation, given by the
circulation round the double circuit formed by its equatorial axis, and an equator on
its boundary.

Now the secondary spin velocity is given by

vp sin ¢ = 2}“ Y.

™
And since ¥ = 0 on the boundary, it follows that
. . . A
v, = 2mpvsin ¢, along the equatorial axis only, = — U,

where ¥, is the value of 4 at the nth equatorial axis, or

TH J 2 T
w— Sl PN w = &, Jr
Yy SN — sin n { n nt S

where J, =J (\x,) and J'=J ()).
VOL. UXCIT.—A. K
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18. The moment of angular momentum is
o rmf2 i .
M=2 }' f 2mpr dr dfvp sin ¢

- El ( fx,b/ sin @ dr d6

27 pa? LI
mr J =zt J) 2? clmj sin® 6 {0
SiA — sin A .v(o( ) 0
B T J JEa sin Ae — x? cos A\ — atJ ) dx
< SiA — sinh o\ A '

o P T B (oo ) . SAY _ sind .
= "gin --sinh{(f‘ )\.3/<00E> x) N R )

/

where m denotes the volume of the aggregate.
19. The internal energy of the aggregate, supposed without translation is

B = & [[2mp dpdz (1 cos®  + v?sin’ )
=4 forp (o () 2w o

/
where
Yp=A (] —a?)sin®0
and
T
A= StA — sin A

Hence, as in the usual way,

S N O N KON A Y N _};
"= 4#{,0 dn ds 477”41{dp< (lp>+ d”kP d/) "b}dpd
Now along the boundary Y =0. Also

d /1 d /1 d\[r _ N AJsm- A E{}p,}',
dp vp dp 67/ p dz

o 2

a p a’p a
therefore

A2 ”‘1[,7 c: e + )i.ijl, Hlppy- dr df

_ VA {2 H"{f} — T sint 0 df de + I T’J — 22T) asin’ 0 df d'v}

0 o 0
AZAZ (1 ' sin A ° 2 sin* Mz sin )NL
= = g 23— 33 (T a2 o )\uc> 4 —_—2 e 2 cos’ )\Jo}dm
o g A N/,
AAZ 3 111 A 3ceos A, sin X gin "7& RESHEDY
= e 3J’( uma N ) ., }
oma | A8 A
AZAZ [/ 9 sin®A 2 sin A Ccos A
— 1 __ e — 1
dma {K5 A > J° + A A + }
NAE S 9 i 5
= -— sin® A
3ma 1&5 AP + }
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or

. <§ - —9;> J’? + sin?
E=T000 N (19)
3 (StN — sin ) e '

The energy due to translation is that due to the bodily translation of the sphere
+ 1 the same.
The velocity of translation is
p I =L Asinn

= A (Sin — sin 7\)

Hence this part of the energy is

3. 3. 57a’U%

Therefore total energy is

. 1 ., R
(Szh?:in N { i ?»’ J’Z % sin® N + <ﬁ— J’ — % sin )\)}

- mple 9
(S'M — 8in )»)

A verification is afforded by putting A = 0 (Hriwr’s vortex). Then

btlr-'

>J” *-J’smh-{- qsm?)\} co e (20).

(Sth — sin A\)* = g A%

Large bracket = —*-7%'9“75 PR

which is correct.

The preceding formulee refer to the whole aggregate. When, however, A > the
lowest \,, there are more than one component, and it will be well to give the
requisite formulee for each of these separately. Denote A\, /a by y,, where 7, is the
radius of the nth interface from the centre. Also for shortness let S (x) denote the
function Siz — sin 2. Then J

Mo S(?/n) _ S (?/11—«1)
no= R T O (21
Iz S (21)
v,
e mm J,—a2J . .. . ... (22),
( Yn) — S(:’/n 1) { } ( )
J, denoting the value of J at the equatorial axis.
R Y
M, = 58— sinn) { s (y SY =Y Ry =Y N ) dy

1 n D) . D .
—_ ?\j S(‘/”) 71’[/_/"% (‘/n—l) {3ynJ (yn) - 3yn—lJ (yn—l) - ?/77 s yn + y‘:zt—l sSin yn—l

Jn Jn,—l J (>“) }

5 A
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But
S JA
Jy -y o =
Hence

L 3 s \__ Yo 3/?1:1} TN N 2 i
M= 5o — s(z/ﬂq)HS(y“ Your) =7 5T e TN Y Y . y"‘“J - (28).

20. The velocity of translation is given by

p Asinh — 3 (sin MA — cos M)

U= — 30 A (SIA — sin A

— Y {l I e
= = S Sin — s d oy O O = AT ()

To see how this varies with the parameter \, refer to the graphical construction in

fig. 2, Plate 1. The curve J and the parabola intersect in P. If A be a point on

Fig. 3.

be)

0

the curve (fig. 3), and B on the parabola with the same abscissa near P, and PN be
the perpendicular on AB,

Y S
U= da (SN — sinn) PN

I sin (e — B)

‘%a(é@h — sin A) cos « cos 3

noosin (a — B)
3aA  cos acos B

Where «, 8 are the angles which the tangents to the curve and the parabola at P
make with the axis of «, and A denotes the area of the curve OAPMO.

. M e al > N — ] -
The factor 80 (Sin — sin ) is always finite, except for A = 0, and positive. It is

then easy to see in general how the velocity alters as the parameter A increases.
As P (fig. 2, Plate 1), travels along the curve, U is positive. Leaving out of sight
for the present its value for N small, it later on diminishes to zero when P reaches a
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certain point Q where the parabola touches the curve. It then changes sign and
remains negative until P reaches another  point where the parabola again touches
the curve, and so on.

We shall call the values of N corresponding to the Q points the X\, values, and
denote them in order by M, AP, .. . M{".  Thus for values of A < \" the aggregate
moves in the direction of the rotational flow up the axis. At A = A’ the aggregate
is at rest, the velocity of the fluid on the boundary is zero; as A increases beyond
this, the aggregate takes on another layer with primary rotation in the opposite
direction, and it moves in the fluid in a direction opposed to the rotational motion of
the innermost layer. It regredes relatively to this. The velocity at first increases
and then diminishes until P reaches the second X\, point, when the corresponding
aggregate is at rest in the fluid, and so on.

The periodic nature of the aggregates is thus evident. We get for example a
whole periodic family of aggregates whose peculiar property is that they remain at
rest in the fluid. The members of the family differ, amongst other things, in the
number of independent layers each possesses.

So we get another family formed by values of N, corresponding to points where the
J-curve cuts the axis of «z. We will call values of A, corresponding to these the \,
parameters, and denote the orders in the same way as for the A, parameters. As we
shall see shortly, the distinguishing property of this family is that in each of them
the vortex lines and the stream lines coincide.

For small values of \ it is preferable to express the value of U in terms of the
lowest powers of \.

It is easy to show that

. . 2 2n Al
SIN—sinh =g N = = (N e e
whence
U= 5/; (I =175 N).
This gives for A = 0 the value of U already known for HILL’s vortex.

The curve y = U/U,, where U, is the velocity of the non-gyrostatic aggregate of
same cyclic constant and volume, is drawn in fig. 3, Plate 1, up to M. The periodic
quality is evident.

21. The directions of the lines of flow and of the vortex lines are given by

o b= PSne A 04
tadn({)--vpcos(ﬁ-—a@“. Coe e (2,
dn
_epsiny M J sin® 6
tan X = wp COS ¥ - 12 %—{(J _ %‘2J/) sin? 0}.
dn
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Hence

‘22 sin 0
t&nX:—tan(f)—-‘L' —J__‘% s 6o )
: »-M{(.I — a2") sin? 9}

(25),

also

Equation (25) shows that when J’ = 0, ‘.e., for the \; parameters, the stream lines
and vortex lines coincide. (It is to be remembered that we have supposed in the
foregoing that ¢ and x lie on opposite sides of meridian lines, and therefore
tan ¢ = — tan x means that they lie on the same side and coincide.)

I From A=0 up to A=A J > a*J and J — 2]’ < J. Hence between these
limits, the stream lines and vortex line are on the same side of the meridians, and
x> &, t.c., the stream lines lie between the vortex lines and meridians. At A = AP
they coincide.

IT. Between M and NP J>2*J’, but J — a*J’>J. For any given A, J changes
from + to — as x passes through the value Az = \". TFor this value of «, or

= %a, x = 0. Thus, for an aggregate whose parameter \ lies between the first

and \, rocts, the vortex lines lie between the stream lines and the meridians for all
. A . e

points at a less distance from the centre than r = RL @. At this distance y = 0, or

the vortex lines coincide with the meridian planes, and beyond this distance up to
the boundary the vortex lines and stream lines are on opposite sides of the meridians.

For values of \ between the first and second )\, parameters we have to deal with
two layers. In the outerJ — x°J"is negative, whilst J is negative between A{? and \{,
positive between A and \. Referring to fig. 2, Plate 1, let the point p where the
parabola cuts the J curve be given by M\, corresponding in the aggregate to a distance

from the centre A& =\ or » = % a. It is clear that J (X) and J (X') are of the same

sign. Hence, if X lies between A{’ and M\ (corresponding to P between Q, and R,),
N lies between AP and A\, whereas if A lies between A and A\, X" lies between 0 and
A\P—or, taking closer limits still, between 7 and A{".  We find, therefore, the follow-
ing results.

III. P between Q, and R, In the inner spherical nucleus the vortex lines lie on
the same side of the stream lines as the meridians—they are, in fact, exactly similar
to the second category. At the boundary between the central nucleus and the outer
layer ¢ = 0, the stream lines coincide with the meridians. In the outer layer the
stream lines lie on the other side of the meridian, with the vortex lines beyond. When
P coincides with R, or X is the second \, parameter the stream lines coincide with the
vortex lines again, but on the opposite side of the meridians.

IV. For P between R, and Q,, we get still two layers, the boundary being given
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by (say) N (P at p), where JX" and J\ are both positive. J — &*J” is positive between
0 and & = \'/\ and negative between @ = X /N and 1. In the inner spherical nucleus
(r =0 to » = Xa/\) the stream lines lie between the vortex lines'and the meridians
(similar to the first category). At the interface the stream-lines coincide with the

meridian.  In the outer layer the stream lines and vortex lines lie on opposite sides
.15 . . . ) A
of the meridian for points whose distance from the centre are less than ;T a, or greater

than %%)a For points at a distance 2”{1 a and 7%? @, the vortex lines coincide with the
meridians, and between them the two lines lie on the same side of the meridian. In
the same way the behaviour for aggregates whose parameter is greater than A\, may
be determined. The periodic nature of the aggregate is again very clearly seen.

It is perhaps easier to describe the nature of the changes above indicated by supposing
our eyes placed in a prolongation of the polar axis. Call the vortex lines blue lines and
the stream lines red lines, and suppose for A small that the stream or red lines lie on the
right of the meridians. For A = 0, or HirLL's vortex, the red lines lie along meridians
and the blue lines perpendicular to these, along parallels of latitude. As X increases
the red and blue lines swing round towards each other, the reds to the right and the
blues to the left, and this goes on with increasing values of A up to A%, when they
coincide. Beyond A = A" and up to A = M\ the red and blue lines interchange their
relative positions. In any given aggregate the blue lines move more and more

- ) AP
towards meridians as we pass from the centre outwards. At a distance i—a from
the centre the blue lines all coincide with the meridians, both red and blue lines are

cn
swinging round to the left. Beyond the distance Z;i— o the blue lines cross to the left

of the meridians and the red lines close up towards the meridians until at the surface
of the aggregate they coincide with them.

Between A and A we have doublets. The aggregates lying between A’ and \?
and between AP and A? are however essentially different.

In the first set in the central nucleus the blue lines lie to the left of the red, and
both to the right of the meridians for points near the centre. As we pass outwards
from the centre they swing round to the left, the blue lines swing past the meridians
whilst at the surface of the nucleus the red lines just reach it. Beyond, in the
outer layer as we pass out, the blue and red swing further to the left, and later at
least the red swing back again towards the meridian, coinciding with it at the
surface. When A = A\ red and blue coincide everywhere. They lie to the right in
the inner nucleus and to the left in the outer layer.

Between A and \? we get aggregates in which red and blue lines again change
sides. In the inner nucleus both lie to the right of the meridian, blue furthest out.
They close up to the meridian as we pass out from the centre to the nucleus surface.
In the outer layer the red lines swing further to the left and back again, the blue
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72 PROFESSOR W. M. HICKS ON VORTEX MOTION.

lines follow after in the same way, crossing the meridian twice; once in cach
direction.

Beyond A\ we get triplets.

In general, between A{” and M** the blue lines lie to the right of the red or the
opposite according as 7 is even or odd. They coincide for the N\, parameter. Also, if
n is even, both lie to the right of the meridian for the inner nucleus, the reds to the
left for the second layer, to the right for the third, and so on. Whilst the opposite
takes place if n is odd.

The forms of the spirals may be obtained by finding the polar equations to their
projections on the equatorial plane. Let (p, 7) be the polar co-ordinates of a point
on the projection of a flow ; (p, s) of a vortex line lying on a given sheet . Then

dn ds
p, =tand,  p_-=tany,

where ds is an element of a meridian curve. Hence

S LR L
dn = @ A~ o« dfr

Pim P ag

Provided dr is not perpendicular to ds, z.e., on the outer boundary, but then s = 0

and n = 0. '
A dr AP dx
dy = — M=y 3

~ .-
a 2cosf

where x, corresponds to the inner circle of the two in which the current sheet 4 cuts
the equatorial plane. The total angular pitch of the spiral is

Z2 dx
XLI{:O'S”@' e (28),
where 2, x, are the two roots of

M (Sin — sin )
- T

J (\z) — 2*J\ = b, say.

The above may also be written

@ J—aJ 3
o;:—%)\j‘xl{JmméJ,tjé} de . . . . . . . (27).

Equation (26) enables us easily to determine the form graphically when the
surfaces ¥ are drawn. So

s=q+ 50 [ (T—I) (I = —b)~atde . . . (28)

&1

the case of a spherical boundary being excepted as before.
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For the outside stream-lines the pitch is
A
R

For values of \, however, lying beyond X} there are several layers in which the
stream-lines are distinct. If @, @, x; . . . denote the values of & corresponding to
the interfaces of the layers, the pitches of the stream-lines on those surfaces as we
pass outwards are

(z, — 0) A, (e — @) A, (25 — @) \, &e.

We have seen that on these surfaces the stream-lines coincide with the meridian.
These parts therefore produce no part of the pitch. The twist must be supposed as
taking place in the part of the stream-line along the polar axes. It is easy to see
that this is so by considering current sheets near the interfaces.

We may therefore regard the physical meaning of M to be the criterion of the total
external pitch of the stream-lines. 'We will return to the consideration of the pitch,
and the shape of these lines later.

The total angular pitch of a stream spiral on any stream sheet ¥ can easily be
expressed in terms of the volume of the fluid inside that sheet. For

ds N’ U
d AN —t
s = dy p & dy X A(Sin — sinA)
dn
_ AN 2mpdsdn .. wpa
= dn 2ma?  doy’ if = A(S0n — sinA) .

Integrate round the stream surface

_ AT
TN opw ay

J/ (Z/l’n/
2mra® (h]f C o (29),

[277/3 dsdn = n —

where m denotes the volume inside 1.
22. The discriminating properties of the \; and X, parameters make it important to
determine their values. The \; parameters are the roots of the equation

sin -

J()\)__~—h— —~cosh==0, or tan\= \

The large roots are clearly nearly (2n - l)g

Put
A= (2n 41 T ey = a — y say.
9 Y Y sa
Then
cosy .o
“—y siny = 0.
VOL. CXCII.—A., L
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Expanding this in powers of y, it is easily proved by successive approximation that

12 13
A T
or
2 16 13 x 32
A = (90 + 1) — —
A i Il Yy yout 15 (20 + 1)
63662 17201 03558

= 157079 (2n + 1)

T 1T Qa1 @2n 1) (30).

The first root is by numerical caleulation
N = 449341 = 257° 27" 10"
The foregoing formula gives for this case (n = 1)
A = 4°49366.

For higher values the formula is correct to five places at least
The first three roots are
449841 = 270° — 12° 32’ 50 ‘l
772528 = 450° — 7° 22" 27"
1090408 = 630° — 5° 14’ 23" |

(31).

The \, parameters are roots of the equation
1 A
cot A = N TR

The large roots are clearly nearly nm = nr — y say, where

or

Writing n7w = 8, and expanding in terms of y it is easy to prove, as in the former

=3 G (3)

7

case, that

3 AR AT
}\'—__:n»n-,_.,__ __.%..(.A.->__%(Ti
T T \TVIT
05493 29026 15881
= 3141590 — - — T s (32),
n w Vo
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There is no root corresponding to n = 1, The first root is
N, = 576346 = 360° — 29° 46" 41",

The formula gives for this root
A= 576448,

For n > 2 it 1s exact to five places.
The first three roots are

576346 = 360° — 29° 46’ 41" .
9:09506 == 540° — 18° 53’ 29” S .. (33)
12:82296 = 720° — 13° 56" 48"

23. Equatorial Axes.—An equatorial axis is the line of particles which remains at
rest. It is given by the equation
d
(7\:& =0, when 6 = 0,
or by
dJ d ST
e " @)= 0.

The positions of the axes are, therefore, readily observed by means of the graphical
construction in fig. 2, Plate 1. They depend on the abscissee of points for which the
tangents to the J curve and the parabola are parallel.  For values of A > \{’, the
inclination of the parabola to the axis of x is always small. Hence the equatorial
axes must always be near the crests (or bottoms) of the J curve, s.c., near values
( 2m -+ 1) %77.

The equation for the axes becomes, if % be put for \z,

’

1\ . J
COS?/+<y—~y—)smy—2y2vx2=O. Coe L (84),

in which the roots < \ are required.

As the values of the secondary cyelic constants and other important properties
depend on the position of the equatorial axes, it will be necessary to determine their
values.  We shall do this (1) for the case of X small, and (2) for the case of A large-
As, however, the case of the )\, values is special, we shall treat these separately. In
the case of values other than \,, say, e.g., X, parameters, all the axes of any aggregate
depend on the particular X value. In the case of \,, however, they are independent
of the particular \;.  In fact, the successive \, aggregates may be built up by taking
any one and putting outside of this a suitable vortex shell. Moreover, the values of
the axes for the N, roots are the crests, and bottoms, of the J curve, and so are
important for their own sakes.

L 2
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Case of N small.—Here y is also small.  If equation (34) be expanded in powers of
y and X, there results
NS, (=) B A3, ()" L o = 0.
! (On + 3) 2n + 1)! SN (n 4 1)
Dividing by 24°/15, this may be written

22

\ -

gy A B0% () Gyt Dy =

whence ¥ can be expressed in terms of N by successive approximation. To A it will
be found that

This gives the equatorial axis at

A

e OOl oM aan (N > :
21t T e T e Loy

When X = 0, this agrees with Hinr's vortex.
Case of M.——The equation in y for this case becomes

cos y -+ <1/ — ;) siny = 0,

y 18 always nearly nar == nw — z say, where z is small.  Then

1
. COS % == (nw-—-z-—-—
I = 2

> sinz = 0.

Whence

: 5 7
Y Z= AT e i A
nr 3 (nw)y 15 (nw)’

31831 05375 01590

= I - v fo—

3

w Vi n’

'This formula gives for the two first roots
975363, 611682
The values obtained by numerical calculation are

274371,  6°11676.
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The roots beyond this are therefore given by the formula correct to five places.
The radii of the equatorial axes are » = ya/\. Hence using the values of \; given
in (81), the first three are. For A{",

2 7Lo7]

po== 44%41 = 61062 «.
Hor \®,
611676 , )
—_— T Q1Y
,._7‘)5% = 79179 « ‘
27437 f
e = 135516 a,.J
or AP
9 ,166, b
B AN Y VD
7y ]0“0408 85442 a
611676
P = {ggu0s @ = 20096 @ ¢
274371
"= pg0d08 @ T 20162 @

Case of N large.~—The number of equatorial axes depends on the order of the A,
parameter next greater than . If \ lie between Ay~ and A, there are n such axes.
It seems then natural to refer the magnitude of X to A{”. Suppose then

A=\ — X,

where the maximum value of X is about m,—or we may write A = A" + X, and if
both be allowed X will have a maximum of the order 4.

3 3\? 3\°
() — _ L)
N = nar nar ‘)‘<n7r> 5<7r>'
The equation in v is '
) ,,_|_ ,];_ Sin 2, 2 J_)i, .
cosy +(y =, y ¥z =0

in which the first n roots are to be determined. For small roots the parabola of fig. 3
is almost coincident with the axis of x, and consequently the small y roots are very
nearly equal to the corresponding values for A. It will be best to obtain an
expression for the large roots and then see how far back it holds for the smaller roots.
Clearly y is always near mm where m is an integer < n.

Put

Cy = mm + 2z = o 4 z say.
Then

Cos & 1 Jr
B m c) —
+<1—~y>sm4—-( ) Yy =0

J (\) may be either 4 or —, it is of order of magnitude 1 at most.
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Since z is not large (it is of order 1/a), we get

o

L R (1 AN 1 2\
P e ""2""41)"’&1"“4‘2""@3)
3 2 , 2\ JN
AR W e (=Y 9 ( REARIES
X(/ 6 6'> (=) 2 1""@)7\‘ 0.

\ / \ /

Write

The greatest value of a/\ is < 1. J'\/Nis of order 1/A, therefore at least of order 1/a.
Hence in the most unfavourable cases b is 2 2. The above equation can be written

b bz 2z 2 2 2 3

o g @ 22 27
e e e N Sl e ey T

o e d! 5’

2P
2 o -

I
R
b
]
O
R

1 b—1
——— T (1st approx.)

22 o

RIS R
;

b—1 2) (b — 1y oy
=1, 0=D) @B+ 20+ 5 -
* | Ge? N 1)

4+

It will be convenient to put b — 1 =¢. Then

¢ c(e+3)(c+6) , 1 {c(a EEHO@ bt ) L, L, .
T + 6a” + o 12 e 3G € Z—Y . ;t';‘y} .

If M is a Ny voot, ¢ = — 1 and

L5
T o 3’ 1507

which agrees with the result already found.

24. The Spiral Forms taken by the Lines of Flow and Vortex Filaments.—The
equations determining these are given in § (21). Unfortunately, however, they are
not integrable in finite forms.

We give a graphical method for the stream-lines later. At present it is proposed
to determine (1) the forms of the stream and vortex lines when ) is small, (2) the
pitch of the spirals near the equatorial axes, and (8) the pitch of the same on the
outer surface.

Let the stream surface ¥, the streams and filaments on which we have to investi-
gate, cut the equatorial plane in circles given by /¢ == x, and z,. Then

B N S
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where

A . .
b= s (Seh — sin N) 4.

In determining the vortex filaments we will take s to be measured in the same
direction as 7 : that is, to the right of meridians as looked at from the polar axis.
In this case

[ J sin®d dz A J dz
§= )\L sin @ (J ~—93%I’)2sin€cos{) : § \/{(I— I () — a*J’ — b)}
or
a2 dw

j T =2y (=t — b))

A
s=mn+ ’Z—J

(1.) Case of X small.

J——mZJ'::%—)\‘*mZ{—-x —+—"~7§~(9@ - 1)}

also b is of order At Put

b = & Ne.
Hence
. <1—w><1~~—x+1“) ]
n= 5 o —r o dx
L - A - A .
. v(l ) g(l ') CJI
@), T, are the roots of the denominator equated to 0, viz., of
9 9 ,
xt — +C'"28( — %),
A first approximation is
, 1441 —4c
= —“—L/E« © = or 7 (say), where 7, denotes the smaller root.

Let for a second approximation

2 =7 4 & where £is of order %
-t e=0r+o2E—r —EFc=(2r —1)&
a8 =) - B € — o — £
Therefore,
(20, — 1)€ = ;—L—é (1} = ).

é: = 7&:2 74;;*—;.711, . >‘i ’17)(7”1"{‘1)
98 2=l T 98 ey
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Since 1, -+ 7, = 1, also 771, = ¢,
Me o1

28 "y

= Hence the roots arve

B, Ne 1

= 2 . AC T

Si e
.2(7

Tyl

and

‘Whence

M =

THE ROYALA

SOCIETY
(e

El(h
26 N (V[P = PR
— = Sy where ¥ e o
gbu 4y, G- e ] /
85) ° In this put
=Z Yokl Yoy
=3 Yy = %1 -5 = cos 0.
o=
So that
Yo— o Y2y e
Y= y= (1 ~ cos 0) Yy Y == 191 (1 + cos 0).
Then
A [? JRE— -
M = ~§ A1 =y do,
| 4 ),

£ N ‘ o 0
=3=z8 = J(O A/ {1 = Y1 — (Yo — 4} sin’ ;} db,

i

(87,

and
pr = T __ Tl
12— B
. S
T—=u 1—a
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At the equatorial axis k=0, on the surface t=1. Thus % increases from
0 to 1 for the various current sheets in order from the axis to the surface. The pitch

of the helix on any sheet is
Pitch =\ /1 — 4, E

At the surface this is \, at the axis it is

— T T _ T 1 MM A
=M=y =7 {1 g(l 112)}—2«/72<1+112>’

Since 7/(24/2) = 1°11, the pitch at the axis is about 11 per cent. larger than on
the surface when \ is small. \

The corresponding quantity for the vortex filaments is given by

. 1 , 2 x‘zdx
=1+ 3\ { ST =2INT =T — 1)

By what has immediately gone before

¢ — = L\J’ ”3_0 zdz
7)_—2 x‘4 2 2 2 ' 2 2 2
1—**(90 + 1) p /{1 = @) (& — 2f) (2§ — 2*)}

=l.2_5_£ Y dy
: SJ<1 _2% -8 ?/>x/{(1——:L/) ¥ — ) (. — )}

T a0
= "9 I3 A2 A2
So(l“'éé““%?’>”"y

Iy d¢
W“?"S (1= 0 rm -2 G-msnee) v -2y’
and
T =3 (1 — o\,
Therefore
>\‘2
= 5<1_T0> N %
32 o an? 2dnt )’
/T ]1{1 B _2_8 a +,/1)} o (I — nsin® )4/ (1 — A*sin® ¢)
where
)\‘2
= el ) = g /(L= o)
Thus
2
5 — e A + 5;'8./1
_\/]_..?/1 (k.¢) + T, O(—mn,k¢)y. . . (38).

At the equatorial axis n = 0, k = 0; II = /2 for a half turn.
VOL. CXCII.—A. M
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Thus the pitch at the equatorial axis is

2
. b SN ?2”.7/0
LT

2 ’ ML=y

and
)\’2
=2 <1 115)

Therefore

Pitch = 1;‘ {\7% <1 + ﬁ%> -+ \{2 <5 1 )‘2> (1 - 17;22>}

m

—————— 00 + 2 (5 — ¥y W)}

b

= 3vo L+ iz k).

If N = 0, the pitch is o, as it cleaﬂy ought to be, since all the vortex filaments
then lie along parallels.

The Form of the Spirals near an Equatorial Auxis.

The meridian sections of a current sheet near an axis will evidently in general
be elliptic. To find 5 it is therefore necessary to determine for an ellipse the

value of
[
cos 6

The following general theorem enables us easily to do this. Transfer the origin
to any point O' in the equatorial plane, at a distance ¢; and let the new polar
co-ordinates of a point P be #’.#, corresponding to .0, Also let x.y denote the
Cartesian co-ordinates referred to O’. Then

=" 4 ¢ + 2cx,
rdr = dr’ 4 cdux,

]‘ dr 5 rdr i’ r'dr’ + cdw '( dr’ + ¢ I dz

cos @ Jreos @ ) 7 cos cos ¢’ Yy

For the spirals near the axis the point of interest is to determine the angular pitch.
Now clearly for a complete ellipse, whose axes ave parallel and perpendicular to the
equatorial plane, and whose centre is at O’

dr’
f cos @ 0
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Further, if the axes are «, 8, respectively in the equauorlal plane and perpendicular

to it,
%= a sin 0, y = B cos 0,

where 0 is the excentric angle of a point on it. Hence.

Féﬂﬁ_f zacos 09 _ o
y ).z Beosd =7
Therefore,

mac

A
7 (for half-turn) = FEETE

or,
Tac A

B o

angular pitch =

To apply this, it is necessary to determine the form of the curreut sheets near the
axis.

Let the co-ordinates of the equatorial axis be ¢, o.

The equation to a current sheet is

{J (%—) —_ %f J ()\)} sin® # = constant,
or, \
P

9 AP »\ 2
£ { J <l> -k Gf—) } = constant.
7 @ @

k= J (\)/N, and 7, p are nearly = c.

A Ar\? . . .
Denote J ~;— —k (—(%) by f, and suppose it expressed in terms of x, ¥ co-ordinates.
Refer to O".

Then = = ¢ 4 § y = o0 + 5, where & n are small. Hence, if  now denote the
value at O/,

(c + & ar &7
(c+ & +» [f dx” f+ {62 dz? + 26y dx dJ + dnz}] = constant,
ﬂ_ﬂﬁ g _ 4y
de ~ dr 7’ dy — dr v’

and df/dr = o, for ¢ is given by this equation.
Denote dfjdr by f', d*f/dr* by f”. Then

a2 1 a? a2 ., 2 ., ..
7[,]:‘ = <‘j,f - "7,‘3‘> I+ =S = *j%f = f", since @ = 7 to 1st order,
d2 Zy zy r
g{%z /f+ /f = 0, since ¥ = 0 to lst order,
&f 1 ,
7= (%)=

M2
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Hence ‘
(1 — %:,) (f+ 1€/") = constant.
The constant is nearly f == f'— a say ; then

— L= —a,

or the curve is the ellipse

e
20 | — f" + ac*lf
™~ Sy ) Y
Hence the angular pitch . 2= -

Now

Jar 77 A d? ,d (A)
7 eAr — s 2 LY
f CZV‘{ a a JX} T oa dy {J‘I/ Y }

S 2 NP2 R ' S 201 _ 7_2( 2 )
- {dy V}_a"{<?/2 1>Jmk2}mw g

A

, of
e s 7w
2 =
where
: J @) :
pe= 0o 1
Ty) =yt 7
Now o : (x)
ow ¥ is determined by J (y) — v sin y -+ 2% = 0, therefore
. J
siny — “)»(?) 1
R R T
siny — Sy ( !
1 1
=1 1 S
2 y2+zsinyﬁm3
JN
( Note for A, aggregates p* = % — ;19 > .

When the value of \ is fairly large we substitute for y from equation (36)

Yy = mir -+ 2,
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where
b—1 b—-1)B+2)B+5
) = + ) ( ) ) ( ),
-2 oL
J (A
wzmm, b=z (=)t
Therefore
1 1
2 -1 . T 1
P=rx (oc+z)2+2(__1)m sinzb 3
(“ + Z) 2 (___)m a?
1
=%— 2’+2 992 5 — LB
PR
1 1
— 1 . + 1
-2 a? 2 2az( P 22 22
— s + 1 R S
TR 2 TRy =1/, b+2b+5b (b——l)2< b—1
Ty &1 T TR L= ba® 1= ~7/ -
1
=1 41
=3 2 230 — 1) T . , i
__________ — ) — )= 1r— _ 2
; {1+6u2(b+~b+o b=12—6b—1)F —3
1 1
N
— 2 a® 2p -1 b+ 5
. (\2 + 20 s
1 b
=1l—= 41 .
-2 2 © b—-—1DGB+5
@ — (b + ?4) + (A,WA);;#:!—”)
1 _@=1)@+5) b+ 6o—1
) T o 1 2
= — By u b—1) b+ 5)
b+2—(—b-1—)o§[’-i-"~) “ b+2_..(__‘h);§__+i)

and the pitch is
/ b4 2 — @;"_12;(21’;."_@

"/\/ s ="\/{b+2+@%{;—9—b}'

Q02
Now ,
m | %
b=2(—)<h>Jn
where

A=A —X
and ‘ ;
3 3\

() e — ) — L[} -
A = nar <7W> 3<n7r>
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and
X 2 7 = qm say,
denote nwr by B ; then

-

therefore
- o (VL o 2K 0RO e (2 8K
b+2_2[1 — (=) <n>{<1 -+ 3 - o5 >cosX N -+ Bz}szH.
For very large values of A we may neglect powers of %—, and then

A

For the outside shell m = n,
pitch = 2w sin L X,

Thus in the case of the \; aggregates the pitch of the outer layer is very small.
If we number the shells backward from the outside, we write n — p + 1 for m,
and the pitch is

/2 {1 + (=) (Ziﬂif%i})z cos X}

It is seen, therefore, that there are two series of shells in aggregates of large \, one
in which the pitches increase as we pass inwards, and an alternate series in which it
decreases. 1f X lies between a A, and a A, parameter (X, > \,), the outer series belongs
to the first category. If N lies between a A, and a A, value (A, > \;), the opposite is
the case. In other words, if the parametral point P in fig. 2, Plate 1, lie above the
line of abscissze, the outside layer has a very small piteh, and those of alternate shells
increase as we go to the centre. If P lie below the opposite is the case.

The vortex spirals are given by

a2t dae

by a
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Write J — &)’ = f.
Let o, be the value of « at the axis, so that f' = 0 when x = «,.
For points near the axis,

L= mo + fa
] J@) =+ af &+ . & = f+ LaXf. &,
and
M (@ + £y dE

&
N e

where (4 f”) means the positive value of L /"
To the first order,

9__,,,:&7; b (z, + E)°dE )
“2“")5 {a-o (-2 e}
—& a” i
Hence for the total pitch, :

¢y = AN prh (23 + £ dE -
ERRTEIE 20

E= & sin 0.

Put

s — oy = AN eI (af + E2sind) dO
a7 p
a(f )So ,\/ <__ ;;U — g2 sin? 9>
or writing
2411 g2
k= - oy E
i Y 2f 2f e
4).(]—, S JLO af// + ) 77 + Sl sin” 6
ST a/(— 2/f") /(1 — i sin? 6) do

ey o 9f
T a/(— 2ff ”)ng - agf”> Ft @’ E}
At the axis itself 2> = 0.

= N T
T T /=
9—“\/ o+

— "

- a‘/( 2ff//) {(f) + & J J

_ 27N (y) . - 2dN
Sz T IV

2mrd
=_________y__27 if J(y)>y=, T3
var(ir-%)
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or
277' Z'I/HJX ’l/JX

— N ‘"”'» PO J > lf J < ’
; \/Zf<ﬁ/—-~i>< A Y /
Ve

where 3y = \x,/a.
Spirals on the bounding surface, or interface between two shells.  This is the case
where the transformation (Eq. 26) fails. Taking first the stream spirals

A ds ds
a p dip |
dn

On a spherical boundary this is zero, except for the A, aggregates, in which, however,
there is no flow at all. The other part of the stream surface is the portion up the
polar axis. Here ds = dr and dn = rdf. Therefore

. . IN (¢ dr
Twist on axis alone = [% ¥
Iz

There is no twist on the spherical boundary. Hence

Angular pitch of stream spiral =

Next for the vortex spirals. Here there are two portions as in the former case—
the polar axis, and the spherical boundary.
de = )%“ ) J sin? 0 ds.
“ {(T — 22J") sin? 0}

Hence, supposing at present we are dealing with a singlet only

_2 (e J)» adf
0

* @ sin 0 (J — 28,

1 ' ] 5w
=\ j J 2NN j’ ae

()J N dx + d (J 22T )w‘l 0 sin 6 '

Both these integrals become infinite at the poles. We must therefore treat this
part separately.

=) j R 2 (V) f b do Aphe  Jsintlds
S/ A 0 J._xe 7\«Sin7\4—3J(7\,) asin& [{,S <C_Z‘\ll: 2+/fl‘\pf2 %’
£ P dr \1:(79
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in which &, & are small, and in the third integral, # and 6 are nearly 1, 0 respectively.
Let ® =1— ¢ sin @ = Then near the pole the rectangular co-ordinates of a
point referred to the pole are connected by (if f=J — z*J')

S sin® @ = small constant = B (say)

ar ., .
—%.5811120:B, &= df""y say,
dx
so that when & = y each = v.
The third integral is
2)\]' J sin 0 / (d€ + dn?) )
rsin 0 {(df/dr)* sin* 6 + 4 sin® @ cos® 6 (f/7)*}*

=2\ T/ (dE + dn) o
g(l ~ £ {((D‘/dw) sin? @ + 4 cos® 6 < '{j E)Z}“

_ C_sz%;_c [ ﬁ /\/(1 + (dn/ df)> ¢ 1+ f V <1$(§i%ln)> dn]'

The curve is given by

Therefore

Therefore

st~ F L G G
SV IV ]

207 Y M
R 1 L L
= Y [9 tog g+ log v =gl
The second integral is
I\ Fw a0 _ Mo
Afjdn )y s 6~ dfjdw | °8 B 2]9

A o 14cosf M’ (1 + cos 6)*
= Wflde BT Zcos®  dfjids 08 i@’

and 0 is nearly = 0. Therefore

Second Integral = 3 f/ - log
and the second and third together
=M log L
daffds 2 o

VOL. CXCIL.—A., N


http://rsta.royalsocietypublishing.org/

'y
N
.\
A

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

90 PROFESSOR W. M. HICKS ON VORTEX MOTION.

The first integral is
~& otde

J— a2y

)\I:_&J ‘,J,daa-——X—i-)\J J

Now J — 2?J' = a* (1 — &*) F (x), where F (z) is finite for x between 0 and 1 and
does not vanish. Hence

=& d
o I—a)(d + o)k
1-4 1 da |
)\—l—)\J[ { dj/d@f—:; }

Int. = N+ )\J"

Zf/ o log &, + finite quantity,

Therefore

s=M T CZf/dJo

. A’ 4a \/ 2 at
S=A i - 3J’1 + A S { ey oy (‘1’_‘“;)'1 de,
; J

— + finite.

da

where s is the distance from the pole of the point at which the stream sheet s cuts
a line joining the pole to a point on the equator. The angular pitch is therefore
infinite at the surface owing to the filaments being parallel to the equator at points
close to the pole.

25. Graphical Methods.—The graphical construction indicated in § 17 affords a
very convenient method of obtaining a general qualitative view of the properties of
these aggregates. It serves also for a rough quantitative one, and at least gives for
many determinations the rough starting point which is always the most troublesome
obstacle in numerical approximations, It may be well, therefore, here, to collect
and enlarge on what has gone before in this respect.

The first thing is to trace on a large scale the curve y =J (\) where \ is the
abscissa. This is very easily done, since J is expressed in simple functions which are
tabulated. The curve is drawn for the first three undulations in fig. (2), Plate (1).
Now \ determines completely the nature of the aggregate (except its volume and its
intensity). The point P on the J curve, corresponding to N, we will call the para-
metral point. Draw through P a parabola touching the axis at the origin. For all
points beyond the first few undulations a circle will suffice, or the curve drawn by a
thin lath bent to touch the axis at O and to pass through P. If @ denote r/a, \v
will correspond to a point on the J curve between O and P. If P,, P, denote the
corresponding points on the J curve and the parabola, the value of s in the aggregate
at the point (r = xa, #) is given by PP, sin*d (note PP, will be negative). The
velocity of propagation will depend on the angle at which the parabola and curve
intesseet at P (see fig. 3, § 20). If they touch, the angle is zero, and the translation
velocity zero. In fact the parameters of the points are the A, values. We will call
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them the Q points. They are easily formed by fixing a lath at O and bending it to
touch successive loops of the J curve. It is easy to do this correct to two decimal
places, when numerical calculation will carry it to any degree of approximation desired.
The points where the J curve cuts the axis of x correspond to the A, parameters.
We will call them the R points.
Denote the points where the parabola through P cuts the J curve again by the
letters p. These points give the sizes of the shells into which the aggregate divides.

If ON be the abscissa of any such point, Az = ON, and » = %I\I a gives the radius

of the corresponding interface between two shells. It is evident at once from the
construction that the thicknesses of the shells, as we pass in or out, are alternately
greater and less—that there are two categories, in one of which the thickness
increases as we pass in, and an alternate series in which it decreases. There will be,
however, some irregularity in the two inner components.

The position of the equatorial axes is determined by those abscissee, for which the
tangents to the J curve and the parabola are parallel. They are easily recognized by
the eye, and thus a starting point for calculation is readily obtained. The difference
of ordinates of these points (P,P,) is proportional to the secondary circulations of
the corresponding shells. In fact, when multiplied by wu/(Seh — sin\), the products
give the values of those constants. It is therefore clear from the figure that these
circulations are in opposite directions alternately, and that we get two alternate
series of ascending and descending values.

The function S (\)=StA — sin A denotes the area between the J curve and the
axis of x up to the point . It is clear, therefore, that it has its maximum values at
the odd X\, points, and its minimum at the even ones.

The tracing of the current sheets is particularly easy from the fact that they are

given by functions of the form
Y = F (r).sin® 0.
Let
Ar

FO=3() =,
and let , and 7, denote values at the equatorial axis (i.e., ¥ 2 numerical maximum).
Then
¥ _ [
A J (7o)

sin® 6, sin 0 = AT

On squared paper, draw a series of circles, radii sub-multiples of @, say at intervals
of ‘05a or ‘la, also the circle » =, This last circle has the property that all the
current sheets cut it at right angles.

Let us trace first one sheet (say ¥ = "1¢y). We do this by tabulating the values
of sin @ for values of #, corresponding to the series of circles drawn. Now mark on
the bounding circle (r = @) points whose abscisste aic those tabulated values (which
N 2
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is done at once on the squared paper). Mark the points where the radii vectores to
these points cut the corresponding circles. Join these points by a continuous curve,
and the shape of the particular i curve is obtained ; call it the i, sheet. This first
curve should be obtained with care and as much accuracy as possible. We may now
proceed to draw from this as many of the other sheets as we please. Suppose we
want to draw the curve ¢y = k. . We set a pair of proportional compasses (or any
similar method) to the ratio »/10k. Suppose the ¥y cuts any particular circle at P,
set the short legs of the compasses to its abscissa. Turn it round and find the point
on the same circle whose abscissa is the new value. Proceed thus with the other
circles and the sheet is rapidly traced. Although this may appear cumbrous in
stating, it is very expeditious in practice, and with a moderate amount of care very
accurate.

Having traced the { curves, we may now easily trace the projections of the stream
lines, for these are given by

dr
= 2 = SPN (see fig. 4).
Fig. 4
[T~ \\\
\'\
\ \
Sl R \
A
2}

26. It will be interesting to go into further details for a few cases, and for this
purpose we take the first two aggregates of the \, and X\, families,

The distinguishing feature of the \, types, is that the aggregates are at rest in the
surrounding fluid. The distinguishing feature of the A, types is that the vortex and
stream lines are coincident.

\; aggregates. Here

M ——hsin)l_
U=0 M= o
A2 sin? Arsin®n
=2 o2 oM A g AMPRA @
B =570 G Zsinap = 07 (Sin — sy Lo

where E, is the energy of a Hill's .. - regate of equal volume and circulation.
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The first parameter is A\’ = 57637 = 330° 14
The equatorial axis has a radius = *5130a,

M= -0985mpu
E = 1-6979E,

y = 2:1020p.

Angular pitch of stream lines at surface == 330° 14",
’ ) ,, ataxis = 334° 58"
” ,, vortex lines at axis == 267°.

The forms of the current sheets () are drawn in fig. 2, Plate 2. The projections
of the stream lines in fig. 3, Plate 2. These latter were determined by the graphical
method described above.

The second A, parameter is

AQ = 9:0950 = 37 — 18° 53’ 40"

The equatorial axes are given by

\x = 2'6616 and 62718,
or 7 = *2926a and ‘6896a«.

Radius of internal nucleus = 46940,

M= — ‘1459mp M, = -08904mpu,
E= 38727E, M, = *1890mypu,
oy = 1:9403u vy = 1'1747w,
e == — 9403u v, = 36415 .
Pfpe = — 2°063
Total angular pitch of stream lines outside = 521° (.
s , s inside nucleus = 244° 37’.
',, » ’ outer shell = 276° 29'.
Angular pitch of stream lines at 1st axis = 284° 21",
" ’ ’ 2nd axis = 320° 9.
. ,, vortex lines at 1st axis = 308° 48’.
" ’ ), 2nd axis = 422° 11".
The M\, aggregates. Here
B —sin) _ s —sin A
T84 %A —sinh T 3 Sin —sinn ¥
—sin A
M= m'u'h(Sik —sinA)’
gin® A sin® A

— 70

— 2 . —
E = gmp'a (St —sinn)2 T Y (Sin —sinn)2 T
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94 PROFESSOR W. M. HICKS ON VORTEX MOTION.

where U, is the velocity of translation of a HirLr's aggregate of the same volume and
circulation.
The stream pitch of these aggregates at the axis takes a very simple form, viz.,

m

1’:_/\/;1._‘.l °

The first \; root is AP == 4°49385 = 257° 27" 30.”
The equatorial axis has a radius = *6106a.

U = +6189U,, M = -0826mp,
E = 10'724E,, v = "8016u.

Angular pitch of stream lines at surface = 257° 27’ 30”.
39 2 I axis = 297° 4’.

The forms for the stream sheets i are shown in fig. 4, Plate 2. It is to be noticed
that there is a considerable difference between the angular pitches outside and on the
axis, whereas in the \{’ aggregate they were very nearly the same.

The second )\, parameter is AP = 772538 = 450° — 7° 22’ 27",

The equatorial axes are given by

y=MNx=27437 and 61168,

or,
= 35520 and °7918a.

Radiusg of internal nucleus = *5816q.

U = — 30940, /e = — 1:2500
M=— -2403mp M, = 082618
E= 26'803E, M, = "1005myp,
= 49740u v= 12707,
py = — 3:9740u m= 15135,
Total angular pitch of outside = 442° 37’ 33"
” ” on inside nucleus == 257° 27’ 30".
’ " ,, outer shell = 185° 10’
Angular pitch at inner axis = 297° 4’
’ ,, outer ,, = 261° 39,

In all the \, aggregates the expression for the angular pitech at an axis is
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PROFESSOR W. M. HICKS ON VORTEX MOTION. 95

Hence, when \, is large, the outer layers have their pitches at the axes about
/2 = 254° 31",

~ Fig. 5, Plate 2, shows the relative positions of the shells and axes for the \2 and \?
aggregates. The thin lines belong to the M, the dotted to the A\. A, A are the
position of the A, equatorial axes. B, B those of the A,.

27. In the preceding investigation we find doublets, triplets, &c., naturally arising.
We may have also built-up systems consisting of monads, dyads, &c., as in the cases
developed in the previous section. Each element of a poly-ad may consist again of
singlets, doublets, &c. I do not propose now to develop this theory of multiple
combination to any length, but merely to draw attention to it, and to determine the
necessary conditions for the case of a dyad only. '

Referring to § 15, the general solution of the differential equation contains not only

J functions, but also the functions Y, = 9-9;—3—/ + sin y, which are suitable only for space

not containing the origin. They are therefore suitable for any shell embracing an
interior aggregate. In the shell the functions will be of the form AJ + BY, or as it
may be written

sin (2 + ¥)

; — cos (& + y).

It will be convenisnt to denote this by f(a, %). ,

Let now the radius of the interior aggregate be @, that of the exterior b. Let
also A, \" denote the corresponding parameters.

Then we may write

Inside =1L {J(%Z—> — ~Z-L;~ J)\} sin®d . . . . . . (39),
\ N 72 , <, .
Shell 4 = gL{ Y <oc, ) = Fa )} sinff . . . (40),

Outside = — 7V (w ~ 3}) sint 6.
At the interface ¢, = , and ¥, = 0, therefore

Na

’ a? ,
f(oc,——[-)—> — "Z")z“f((l,)\) = (.
Write «/b=p. This equation, when developed, gives

J(Vp) = pPd (V)
Yoo Ten - - - - e (4

tan ¢ == —

Moreover, the tangential velocities must be the same. Hence, when » = q,

i/ dir = df/dlr.
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96 PROFESSOR W. M. HICKS ON VORTEX MOTION.

Therefore

—{Mm)\-—&T(?\)}——{ S (@ Np) + Np siv (« + Np) — 2pf (2, V)],

But
S (e, Np) = pif (o, N).
Hence
Asin A — 8J (\) = g {(Npsin (« + Np) — 3f («, N'p)} . . . (42).

So, also, making diyi,/dr = dis/dr when » = b we get
V::;Tw{j( N)—FNsin N} .o 0 0 L (43).

Equation (41) determines o ; Equation (42) gives a relation between X\, \, p, and q.
We can therefore impress in general three further conditions. For instance, ratio of
volumes, ratio of primary circulations, and ratio of secondary circulations.

There is a natural connection of the various singlets which go to make up an
aggregate of the kind first discussed. At any interface all the differential co-efficients
are continuous. In the polyad aggregates this is not so. Differential co-efficients
beyond the first are not continuous. Monads, &c., which go to form them, are arti-
ficially combined. It is possible we may, on this basis, develop a theory of special
aggregates which will unite with one another, or split up and be capable of uniting
again in another manner. Some progress has been made with such a theory, but
before an attempt is made to carry such a theory out it will be necessary to investi-
gate the stability of the various systems. I hope soon to be able to take up this
question.

[May 6, 1898.—By the permission of Professor HrLr, to whose careful reading of
the MS. I owe a great debt, I append an independent and very suggestive proof by
him of the general theorem of gyrostatic vortices, based on the equations of motion. |

Let p be the pressure,

Take as co-ordinates #, 0, z.
= 7 cos 0
y = rsin 0
p the density,

V the potential of the 1mpressed forces.

Let 7 be the velocity increasing ,
o be the velocity increasing 0,
w be the velocity increasing z.

Then the equations of motions are -
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(é*lz+fi+ ze“" d/)f- TE-w(y)
(\% + . o 76 + w _> w = — {?z ({— -+ V>
5 07+ G ) =0

It is desired to find a solution in which all the quantities are independent of 6.
Therefore

dr do dw da -
o fmn B0 S(zav)no

The last gives

<g; + 7 Zz'{ ) (ro) = 0.

If therefore ¢ be the equation of a surface always containing the same particles of
fluid, it is possible to take

Also
d d .
C?; (7 T) —l— —(—l; (mu) = 0.

Let « be the current function (which I distinguish throughout from ).

Therefore
1 de 1 de

T o e e == —

: w =
2mr dz ’ Qe dr

Substituting in

d d a
<‘~- -+ T + wﬁ/—z> =0,
1t follows that

dy 1 de dy 1 de dyp — 0
dt 2mr dz dr {._27” dr ds

Now make the further supposition that the surfaces ¥ = const. move without

alteration parallel to the axis of z with velocity Z.

Therefore
Ay ARG
dat - Z dz
Therefore
o 4 2 7 dp d 2 7Y
dr dz (K — Z) T dz dr (K - A) =0

VOL. CXCIL—A. O
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Hence we can take

Therefore
1 dyr dnlr z
T Omr dy W 2 dr + 4
We have now
d /p > 4P dr JdT daw o?
SO (T A T LT o I A
i (\p'l' T > a T (z7> r
d {p 7% wg> daw dr r[w\
_dz<p+v+ 2 /mr/?f—’r(lz'—m*/'
Now
dr _ _ 5dr 5 dr _ dw
at dz s dz )
dw __ gt
dt - dz )
Therefore
d [ p 7 4wt P -\ [dr dw’ 1 o\
—a AV = ) = =2 =) = e ]
1 dy ((ZT dw 1 )
T 2mr dr \dz (Z')'—> T 4 L/ W)T

4 /p 72w 5 N ’c_l: rlw)
_dz( +V+ 2 Z%>mm7(dzwd7"

\
1 ) (E\_p* <(Z~r (Zw>

/

T % de \dz  dr)’
Hence
| T (e _dw 7l T AT
e (l“ﬁf) o |l ay L;l—) |
dz I_dr 7 T 9w T dr _de \ 7 A
Therefore
dr_ dw I -
s%*Li(iz__Jz | 4 (?lz dr) RACONES2) ’_ 0
dr dz r dz |_dr 7 I
Therefore
dp d [1 [dr _dw\ _JO) Q)] __dp d T 1 fdr _dwy SO S W],
dr dz | r \dz  dr 2mr® | dz dr l_ r \dz  dr ) 27r7* -
Therefore

1 <d_r _ d_u> =SS gy,

7 \dz dr ) Qarr®

B Ly B ot B () — f () S ().

dr? 7 dr dz?

Ve
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PROFESSOR W, M. HICKS ON VORTEX MOTION. - 99
Therefore
d/p Lr_ + w L dy [ S () f'(3) TV _Lr(r
T dr \ p +V+ Zr > — [ 2y + ¥ (lp)} Aar%B
_ LW L Fi)
4 [ 87 +- 2 J
and

~ (Z FV TR /w> = La [f LoLAti o wF’(tp)]

Qe dz
_ U
dz [ 8arty? 2m
Therefore

L + w gk | F (\!f)

+ V+ - — Zw + Fre + ——== == arbitrary function of .
Therefore
. , S\ 1 . .
%} +V+ i+ 4 (w—2Z2)]+ o F (1) = arbitrary function of .
This arbitrary function of ¢ is in this paper always a constant.
The last equation, together with the following, are the important equations :

c=y+alt, o=y f(Y),

2y

= tode 1 dy

T T Y de Qrr dz
1 de 1 dap 5

w Qmr dr . 2mr dr +Z,
dr daw
=0 = o S SO S () + o (),
By L dy | @y

= A T = S W) = 2 )

Whenever the conditions for the continuity of the 7 and w components of the
velocity have been satisfied at a separating surface whose equation is i = const.,
then if the irrotational motion outside the surface have o = 0, we must have o = 0
when v is equal to the parameter of separating surface, if there is to be 1o slip there,

Therefore /(1) = 0, when v is equal to the parameter of separating surface.

This is the case in the Third Section of the Paper.]

02
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